Arnold Library

Delineation of transcriptional control signals within the Moloney murine sarcoma virus long terminal repeat.

Graves, B J and Eisenman, R N and McKnight, S L (1985) Delineation of transcriptional control signals within the Moloney murine sarcoma virus long terminal repeat. Molecular and cellular biology, 5 (8). pp. 1948-1958. ISSN 0270-7306

Full text not available from this repository.
Article URL: http://mcb.asm.org/cgi/reprint/5/8/1948

Abstract

We identified three distinct elements within the Moloney murine sarcoma virus long terminal repeat that control transcription. The phenotypes of unidirectional deletion mutants of the long terminal repeat were assayed in microinjected frog oocytes and in transfected mouse fibroblasts. Steady-state levels of RNA bearing the same 5' terminus as the authentic Moloney murine sarcoma viral transcripts were measured by primer extension in assays that included a pseudo-wild-type internal reference. Mutant phenotypes define the boundaries of three functional elements. A region between 21 and 31 base pairs upstream from the mRNA cap site contains AT-rich sequences that function to establish the transcription start site. A second control element, termed the distal signal, lies between 31 and 84 base pairs upstream of the mRNA cap site. A CAT box consensus sequence is located at the 5' boundary of the distal signal. Additional components of the distal signal include a hexanucleotide sequence that is repeated four times. The distal signal augments transcription efficiency in oocytes but contributes only weakly to long terminal repeat-mediated expression in mouse fibroblasts. A third transcriptional control element lies between 156 and 364 base pairs upstream of the mRNA cap site. This element includes the 75-base-pair repeats previously identified as the Moloney murine sarcoma virus enhancer. In contrast to the distal signal, the Moloney murine sarcoma virus enhancer is crucial for significant expression in mouse fibroblasts but does not contribute to transcriptional expression in frog oocytes.

Item Type: Article
Additional Information: This article freely available in PubMed Central and at the journal's website.
PubMed ID: 3018539
PMCID: PMC366912
Keywords or MeSH Headings: Animals; Base Sequence; Chromosome Deletion; Genes, Viral; L Cells (Cell Line)/enzymology; Mice; Microinjections; Moloney murine sarcoma virus/genetics; Mutation; Oocytes/metabolism; Plasmids; Repetitive Sequences, Nucleic Acid; Sarcoma Viruses, Murine/genetics; Simplexvirus/genetics; Thymidine Kinase/genetics; Transcription, Genetic; Xenopus;
Subjects: Organisms > Viruses > RNA viruses
Cellular and Organismal Processes > Genetic processes > Transcription
Depositing User: Library Staff
Date Deposited: 04 Dec 2008 21:33
Last Modified: 21 May 2010 22:33
URI: http://authors.fhcrc.org/id/eprint/118

Repository Administrators Only

View Item View Item
Fred Hutchinson Cancer Research Center
1100 Fairview Ave. N. PO Box 19024
Seattle, WA 98109

a 501(c)(3) nonprofit organization.

© Terms of Use & Privacy Policy