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SUMMARY

Consider a set of baseline predictors X to predict a binary outcome D and let Y be a novel
marker or predictor. This paper is concerned with evaluating the performance of the aug-
mented risk model P(D = 1|Y, X) compared with the baseline model P(D = 1|X). The
diagnostic likelihood ratio, DLRx (y), quantifies the change in risk obtained with knowledge
of Y = y for a subject with baseline risk factors X. The notion is commonly used in clinical
medicine to quantify the increment in risk prediction due to Y. It is contrasted here with
the notion of covariate adjusted effect of Y in the augmented risk model. We also propose
methods for making inference about DLRx (y). Case-control study designs are accommo-
dated. The methods provide a mechanism to investigate if the predictive information in Y

varies with baseline covariates. In addition, we show that when combined with a baseline
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risk model and information about the population distribution of Y given X, covariate specific
predictiveness curves can be estimated. These curves are useful to an individual in deciding
if ascertainment of Y is likely to be informative or not for him. We illustrate with data from
two studies: one is a study of the performance of hearing screening tests for infants; the

other concerns the value of serum creatinine in diagnosing renal artery stenosis.
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1 INTRODUCTION

One of the goals of current biomedical research is to develop better methods for individual
risk prediction. New genomic, proteomic and imaging technologies in particular promise
to provide tools for accurate assessment of risk. These tools could be used in diagnostic
settings to determine which patients are at high risk of having disease and who therefore are
candidates for invasive, costly diagnostic procedures. In prevention settings they could be
used to identify subjects at high risk of future onset of diseases, such as cancer or diabetes,
or of future catastrophic events, such as heart attack or stroke. Formally we define a risk
prediction marker in a rather general sense: it is information gleaned from a patient that
is used to calculate his probability of having or getting a condition which we denote by D,

D =1 for condition present and D = 0 for condition absent.

The statistical evaluation of risk prediction markers is a subject of current debate. The
area under the ROC curve is often used in practice (Wilson and others, 2005; Wang and
others, 2006) to summarize predictive accuracy, but has been severely criticized by us (Pepe

and others, 2004; Pepe and others, 2007,) and others (Cook, 2007). The ROC curve itself



is also problematic because it does not explicitly display risk, the very entity that risk
prediction markers are supposed to elucidate (Pepe and others, 2007,; Pepe and others,
2008). An alternative approach is to evaluate changes in risk induced by knowledge of the
patient’s marker value compared with not knowing it (Cook and others, 2006; Cook, 2007;
Pencina and others, 2007). This can be quantified by the diagnostic likelihood ratio (DLR),

a notion we exploit in the current paper.

Let X denote baseline predictor data, Y a novel marker of interest and D the binary
outcome. For example, with D = ‘a cardiovascular event within 10 years’ and X = (age,
systolic blood pressure, hypertension, smoking status, cholesterol and high density lipopro-
teins), Cook and others (2006) investigated Y = C-reactive protein (CRP) as a risk prediction
marker. Novel markers for breast cancer risk might employ factors in the Gail model (Gail
and others, 1989; Chen and others, 2006) as baseline predictors (X) for predicting 5 year
incidence of breast cancer. In the context of prostate cancer screening one might employ
factors in the risk calculator of Thompson and others (2006) as baseline predictors, X =
(age, PSA level, digital rectal exam results, prior biopsy), to predict the chance of finding D
= ‘high grade prostate cancer from a needle biopsy’. Studies are currently ongoing to dis-
cover novel biomarkers (Y) that would add meaningfully to this risk calculator. One dataset
analyzed in this paper concerns the diagnosis of renal artery stenosis (D) in patients with
therapy resistant hypertension. The diagnostic procedure, renal angiography, is costly and
invasive. Therefore, there is interest in having an algorithm available to calculate a patient’s
risk of having a positive diagnosis with the procedure based on clinical characteristics so that
patients can decide whether or not to undergo the procedure. Janssens and others (2005)
were interested in evaluating the additional information in Y=serum creatinine over and
above standard risk factors (X) that included age, gender, hypertension, body mass index,
abdominal bruit, and presence of atherosclerotic vascular disease. A second dataset ana-

lyzed here concerns passive tests for hearing impairment that can be applied to infants. We



investigate if the predictive information in the test varies with age of the child and location

in which the testing is undertaken.

Early evaluations of new markers are typically undertaken with case-control study designs
(Pepe and others, 2001). Case-control studies are smaller and less expensive than cohort
studies, especially for low prevalence diseases. Therefore we focus on case-control studies of
a novel marker. The study may or may not be nested in a larger cohort on whom baseline

predictor and outcome data are measured.

2 DIAGNOSTIC LIKELIHOOD RATIOS

2.1 Background

The covariate specific diagnostic likelihood ratio of a predictor Y for a binary outcome is

DLRy (V) = ig:g — é;i (2.1)

where P denotes a probability density if Y is continuous and a probability mass if Y is discrete
and the covariates X are baseline predictors. DLRx(Y') is the likelihood that test result Y
would be expected in a patient with the target condition compared with the likelihood
that the same result would be expected in a patient without the target condition, in the
subpopulation defined by baseline predictors X. It is a likelihood ratio in the strict statistical
sense with values in (0,00). If DLRx(y) is above unity, Y = y is more likely to be seen in
cases and we consider ruling in disease. Similarly, if DLRx(y) is less than 1, we consider

ruling out disease because Y = y is more likely to be observed in controls.

The term ‘Bayes factor’ is also used for DLR x(Y") because using Bayes theorem it is the

factor that relates the prior probability of disease, P(D = 1]|X), to the posterior probability
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after knowledge of Y is obtained, P(D = 1|Y, X)), through the relationship:
logitP(D = 1|Y, X) = logitP(D = 1|X) + logDLR x (Y. (2.2)

We refer to P(D = 1|X) as the pretest risk and P(D = 1]Y, X) as the posttest risk, using

terminology from diagnostic testing where the ‘test’ gives rise to the marker Y.

Clinicians have long argued for using DLR to quantify marker performance (Boyko,
1994; Giard and Hermans, 1993) because of its direct use in clinical decision making. Given
a subject’s baseline risk, which is often based on the clinician’s intuition rather than on an
existing statistical model, DLR x (y) quantifies how that risk should be modified by knowledge
that Y = y. The clinical literature on test or marker evaluation is typically highly simplified
by employing dichotomous markers and assuming that the diagnostic likelihood ratio does
not depend on X. See, for example, the series The Rational Clinical Examination in the
Journal of the American Medical Association. A recent article in the series by Bundy and
others (2007) is illustrative. For diagnosis of appendicitis in children, it reports simply the
positive and negative diagnostic likelihood ratio for a dichotomized version of each marker.
The authors comment that the predictive information in a marker may in fact vary with the
child’s age and suggest future study of this issue. In other words, one should examine the
effect of the covariate age on the DLR. We describe methods to fit regression models to the
DLR in section 3 and illustrate with an application in section 4. The methods apply to tests

that are not necessarily dichotomous.

Public health researchers typically evaluate risk prediction markers using receiver oper-
ating characteristic (ROC) curves. Difficulties with these methods for evaluating risk pre-
diction markers have been noted (Pepe and others, 2008), particularly in the cardiovascular
literature (Cook, 2007). Interestingly, the notion of DLR ties in closely with ideas currently

emerging from the cardiovascular research community for evaluating risk prediction mark-



ers in terms of their capacities to reclassify individuals according to their risk (Cook, 2007;
Pencina and others, 2007). The suggestion is to compare risk calculated without knowledge
of the marker, the pretest risk, to that calculated with knowledge of the marker, the posttest
risk, and identify the fractions of subjects that cross clinically relevant risk thresholds. Gold-
man and others (1982) suggested a similar exercise more than 20 years ago. He argued that
ascertaining Y for a subject is only worthwhile if there is a good chance that his posttest
risk will lead to a different therapeutic decision than his pretest risk. This chance can be
calculated for an individual with X = x using the distribution of Y given X = x in addition
to the function DLRx(y). That is, the covariate specific DLRx (y) is a stepping stone to
calculating the likely impact of ascertaining Y for a subject with covariate X. We illustrate

this application of diagnostic likelihood ratio regression models in section 5.

2.2 0Odds ratios and DLRs

It is important to note the distinction between the covariate adjusted odds ratio for Y in
the model for P(D = 1|Y, X) and the covariate specific DLR for Y, DLRx(Y"). The former
compares the risk associated with one value of Y versus another value, namely (Y — 1), in a
population with covariate value X. The latter considers the same population but compares
the risk associated with knowing the marker value is Y, P(D = 1|Y, X)), with not knowing
the marker value, P(D = 1|X). Since P(D = 1|X) = E{P(D = 1]Y, X)|X}, DLRx(Y)

compares the risk P(D = 1|Y, X) with the average risk in the covariate specific population.

The distribution of Y conditional on X impacts DLR x(Y) but not the covariate adjusted
odds ratio, which implies that a covariate adjusted odds ratio for Y may be large but the
impact of ascertaining Y could be small. For example, if Y is highly correlated with X, for

most subjects in the population P(D = 1]Y, X) will be close to the average risk E{P(D =



11Y, X)}, and the magnitude of logDLRx (Y) will tend to be small for them. Intuitively
knowing Y adds little extra information about risk over and above what is already known

on the basis of X alone, if the value of Y is predicted well by X.

To illustrate, we simulated outcome data, D, and marker data, (X,Y"), with the covariate
adjusted odds ratio for Y fixed but varying the correlation between X and Y. Specifically

we generated (X,Y') according to a bivariate normal distribution with: mean (u, pt) in cases;

1p

0 ?) in both cases and controls.

mean (0, 0) in controls; and variance-covariance ) = (

Assuming disease prevalence is p, the pretest and posttest risks are given by

logit P(D = 1|X) = log(p/(1 — p)) + pX — pi*/2

logit P(D = 1|X,Y) = log(p/(1 = p)) + uX/(1 + p) + uY/(1 + p) — */(1 + p)

Figure 1 displays pretest and posttest risks for 1000 observations. For the simulations we
chose the prevalence p=0.2, correlation p=0.1, 0.5 and 0.9 and u = (1+ p)log(10) so that the
covariate adjusted odds ratio for Y is equal to 10 throughout. As expected, the distribution
of logDLRx (Y) is more concentrated about 0 when p is larger (Figure 1 panel (a)), and
accordingly there is less spread of points about the 45 degree line in the scatter plots (Figure

1 panel (b) through (d)).

To see the impact on risk reclassification we chose thresholds of 0.2 and 0.8 to define low
and high risk, respectively. Observe that when p is large only a few subjects have risks that
cross the thresholds by augmenting the predictor X to include Y. In contrast, when p is
small, large numbers of subjects are reclassified as low, medium and high risk. Interestingly,
many risk reclassifications are in the “wrong direction”, with cases having lower risks and
controls having higher risks after including Y in the risk calculation. This crucial point has

been discussed previously by Pepe and others (2007,) and Janes and others (2008).



3 ESTIMATING THE COVARIATE SPECIFIC
DLR FUNCTION

For binary markers Janssens and others (2005) proposed that logDLRx (Y') could be esti-
mated by fitting two logistic regression models, one to the pretest risk and one to the posttest

risk:

logitP(D = 1|X) = 3 + B4 X

logitP(D =1|X,Y) = fo+ Bx X + ByY + Bxy XY

For convenience we write these as simple models in X and Y, but more general model forms
could be employed. The covariate specific DLR estimate is then given by the difference,

which under these simple linear models is:
ogDLRx(Y) = (Bo — B5) + (Bx — Bx) X + BrY + Bxy XY

This is clearly a valid approach for continuous markers too.

Observe that this approach to estimation accommodates case-control sampling. Only the
intercept of the logistic model is affected by simple case-control designs, it is shifted by the
factor logit(p)-logit(ps) where p is the population prevalence and pg is the sample prevalence
of cases. Since logDLRx(Y') involves the difference in the two intercepts, the adjustment
factors cancel. A straightforward extension of this argument implies that case-control studies
employing frequency matching with respect to baseline covariates are also accommodated

by the methodology. Although both BX and B}} cannot be estimated, their difference can.

Though coefficients in the DLR model can be directly estimated by fitting two logis-
tic models and subtracting one from the other, it is not immediately clear how to make

inference about the coefficients. Here, we adapt methods described by Pepe and others



(1999). They consider simultaneously fitting multiple different regression models to the
same outcome variable. They call the models ‘marginal with respect to covariates’ to dis-
tinguish from the more familiar use of multiple models employing the same covariates but
different outcome variables (Liang and Zeger, 1986), models that are ‘marginal with respect
to outcome variables’. Estimating equations yield a sandwich variance-covariance matrix
for coefficient estimates in the different models. Here, the common outcome variable is D
and the method provides a variance-covariance matrix g for (B(’; , B}}, BO, BX, B\y, BXY)- It
follows that the estimated variance-covariance matrix for the coefficients in the model for
logDLR x (Y') is given by AigAT, and the variance of log]ﬁX(Y) can be estimated with
var(logDLRx (Y) = (1 X Y XY)AS4AT(1 X Y XY)T where

A= )

I denotes the (d+ 1) x (d+ 1) identity matrix, 0 denotes a (d+ 1) x (d + 1) matrix of zeros,
and d is the dimension of X. Steps required to simultaneously fit two logistic regression
models are detailed in the appendix. In Tables 1 and 2, p-values for coefficients in the DLR

models were obtained using this technique.

Note that if a factor enters into both logistic models with the same coefficient, it drops
out of the DLR model. This indicates the change in risk incurred by knowledge of Y does
not depend on that factor. One can formally test hypotheses that elements of 3x — 3% are
equal to 0 by comparing the regression coefficients in the DLR model with their estimated
standard errors. A reduced model can then be fit to logDLR x(Y’) by forcing corresponding

coefficients in the logistic models to be equal. Again, details are provided in the appendix.

Here we emphasize again the distinction between DLRx (V') and the covariate adjusted
effect of Y in the posttest risk model. Observe that only if 3; = [y and 3% = [Bx can one

conclude that the covariate adjusted effect of Y in the augmented model, P(D = 1]Y, X), is
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the same as the change in odds of disease incurred with knowledge of Y. The former is more
relevant to etiologic research while the latter is more relevant to diagnostic and prediction

research.

One concern with fitting two logistic regression models to the same data is that the
two models may not be compatible in the sense that their inherent relationship is ignored.
An alternative approach is to fit a model to the posttest risk, P(D = 1|X,Y), and to the
distribution of Y conditional on X, F(Y|X), and to calculate the pretest risk using the
relationship

P(D=1|X) = /P(D — 1|X,Y)dF(Y|X).

This has the advantage that F(Y|X) and P(D = 1|X,Y) are functionally independent.
However the approach is not only numerically more complicated but most importantly, it
does not apply to case-control studies. We expect that by using sufficiently flexible models
for pretest and posttest risk models and by using goodness of fit procedures for each model,

issues with incompatibility will not arise.

4 COVARIATE EFFECTS ON A TEST FOR
HEARING IMPAIRMENT

4.1 The study

The Neonatal Hearing Screening Study is a study of hearing screening in a cohort of high
risk newborn babies (Norton and others (2000)). Each baby in the study was tested in
each ear with three passive hearing tests and evaluated with a gold standard behavioral
test at 9-12 months of age. In the dataset analyzed by Leisenring and others (1997), the

tests are dichotomized and covariates include gestational age of the baby, location where
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the screening test was performed (hospital room or sound booth) and severity of hearing
impairment for deaf ears. Here, we analyze the test labeled 'B’ in the publicly available
dataset, www.therc.org/science/labs/pepe/dabs/. For simplicity, we restrict our analysis to
the left ear only to avoid issues with correlations between ears. 356 subjects have hearing
impairment in the left ear. To illustrate our methodology, we simulate a nested case-control
study from the cohort by selecting all 356 ears with hearing impairment and a random sample

of 356 control ears with normal hearing.

4.2 The DLR of hearing test B

Overall in the population, test B has a true positive rate, P(Y = 1|D = 1), of 61.5% and
a false positive rate, P(Y = 1|D = 0), of 37.3%. Therefore its positive DLR, DLR(1), is
TPR/FPR=1.65 while its negative DLR, DLR(0), is (1-TPR)/(1-FPR)=0.61. A clinician
considering ordering test B for a child may give him a subjective probability p of being hearing
impaired. If he were to order test B and it were positive, then according to equation (2.2)
he would revise the probability to p™ where logitp* =logitp+logl.65. For example, if p=0.20,
then a positive test would lead him to the revised probability pt=0.29. A negative test
on the other hand would lead to the revised probability p~ = 0.13 since logitp+logDLR/(0)
=logit0.2410g0.61=logit0.13. Interventions for families with infants suspected of hearing
impairment include counseling and education in regards to non-verbal communication skills.
Potential drawbacks of intervention are the social consequences associated with labeling a
child as hearing impaired. The clinician should only order the test if his recommendations
about intervention will be different when his assessment of the child’s chance of being hearing

impaired is 0.29 or 0.13 versus when his assessment of the chance is the baseline value 0.20.

We next evaluate if the DLRs of the test vary with age of the child or location where
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the test is performed. That is, should the manner in which the physician uses the test result
to update his assessment vary with these factors? Table 1 displays logistic models fit to
the case-control study data. Both models fit well to the data. Hosmer-Lemershow tests
yielded a p-value of 0.31 for the pretest risk model and 0.72 for the posttest risk model.
We see from Table 1 that gestational age of the child is associated with the child’s risk of
hearing impairment both in the absence and in the presence of knowledge of the test result.
There is also a significant interaction between location and age in both pretest and posttest
risk models. As expected, the newborn screening test result is strongly associated with risk
of being hearing impaired. Interestingly, the coefficients associated with age and location
factors in the pretest model are essentially unchanged when test result is added to the model.
By subtraction, the coefficients associated with age and location in the logDLR model are
therefore close to 0, and none are statistically significant. That is, the DLRs associated with
the screening test result do not depend on the child’s age or on location of testing. The
clinician can therefore use the test result to update his assessments in the same manner

regardless of the child’s age or where the testing was done.

5 QUANTIFYING THE PERFORMANCE OF A
MARKER

In this section, we are not interested in the covariate specific DLR function for its own sake.
Instead we use it as a stepping stone towards evaluating the predictive impact of a continuous

marker.
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5.1 The renal artery stenosis study

In a study of 426 subjects undergoing renal arteriography reported by Janssens and others
(2005), 98 (23%) were found to have significant stenosis. Baseline predictors of renal stenosis
are shown in Table 2, along with logistic regression coefficients estimated using the entire set
of 426 subjects. Continuous covariates, namely age and BMI are centered at their means,
so that the baseline risk relates to a person of average age and BMI. All baseline covariates

except for gender are statistically significant risk factors.

We simulated a nested case-control marker study within this cohort by selecting all 98
cases and a random sample of 98 controls from the 328 controls in the cohort. We assume the
novel marker Y, serum creatinine, is only available for these patients. We analyzed serum
creatinine on a logarithmic scale and standardized it to have mean 0 and standard deviation

1.

5.2 Results

We first show some key results pertaining to the incremental value of serum creatinine for
risk prediction in this dataset. Novel methods to arrive at these results will be described
below. In Table 2 column 2, coefficients of the log DLR model were obtained by subtracting
coefficients of the pretest risk model from those of the posttest risk model. Both models were
fit to the case-control subset. Hosmer-Lemershow tests yielded p-values of 0.16 and 0.92 for
the pre and posttest logistic regression models, indicating both models fit the data well.
Figure 2 displays scatterplots of pretest and posttest risks for the 98 cases and 98 controls
in this study. We see that there is a slight tendency for posttest risks calculated for cases to

increase relative to baseline (average change is 0.044), while risks decreased on average for
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controls (average change is 0.011). However, large changes in positive and negative directions
are evident for both cases and controls. For illustration, suppose that a risk of 0.4 constitutes
a high risk threshold in the sense that if a subject has risk above 0.4 he is recommended
for renal arteriography. We see from the margins of the scatterplots that in the absence of
serum creatinine, 55% (95% CI (0.43, 0.64)) of cases are classified as high risk and 5% (95%
CI (0.01, 0.11)) of controls are classified as high risk. In the terminology of Pepe and others
(2008), the true and false positive rates associated with the pretest risk model are 0.55 and
0.05, respectively. When serum creatinine is added to the model, the true positive rate is
increased from 55% to 62%. The false positive rate is also increased slightly from 5% to 7%.
Overall in the population we estimate that 20% of patients are classified as high risk using
a model that includes serum creatinine while fewer, 17%, are classified as high risk in the
absence of knowledge about their serum creatinine levels. Thus by using serum creatinine
to calculate risk a larger number of high risk individuals are identified and importantly, a
larger proportion of subjects with renal stenosis (cases) are recommended for the diagnostic

procedure.

Now consider a subject with baseline risk P(D = 1|X). Two specific examples are
considered in Figure 3. The right panel concerns a man whose baseline risk is 0.27. The
plots show estimates of the probability distributions of posttest risk for him. The bottom
curves are cumulative distributions conditional on case or control status, while the upper
curve shows the marginal distribution. Suppose his personal risk tolerance is high and he
will opt for renal arteriography only if his risk of stenosis is 0.40 or more. We see that there
is a 20% chance that after obtaining serum creatinine his posttest risk will be in this high
risk range. If he has renal stenosis, that chance is 37% while it is only 16% if he does not
in fact have renal stenosis. It appears that ascertainment of serum creatinine for him has a

reasonable chance of affecting his decisions about undergoing renal arteriography.
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Suppose however that this subject has a low risk tolerance and is inclined to opt for renal
arteriography unless his calculated risk is below 10%. We see from Figure 3 that there is a
very small chance, 0.04, that his posttest risk will be <10%, regardless of his true status.
Therefore, there is no point in obtaining the marker for this subject. His risk calculated with
serum creatinine will not lead to a different course of action from that calculated with the

baseline factors only.

5.3 Methods

In this section, we describe methods to arrive at estimates of the posttest risks shown in
Figure 2 and the individual posttest risk distribution curves shown in Figure 3 using covariate

specific estimates of the DLR function (Table 2).

Having fit a DLR regression model to the case-control data and a baseline risk model to
the entire cohort, we use the relationship (2.2) to calculate #(X;,Y;) = P(D = 1|X;,Y;) from
]ﬁxi(Yi) and 7(X;) for each subject in the case-control subset. Posttest risk estimates are
displayed in Figure 2. Empirical estimators of the marginal case and control posttest risk
distributions follow. These are valid in an unmatched case-control study. Under a frequency
matched case-control design, the estimators would need to be weighted according to the
population distributions of X in the case and control populations, which can be estimated
from the parent cohort. The cumulative distribution of posttest risk in the population as
a whole is the average of case and control posttest risk distributions, weighted according

to the population prevalence which is 23% in our example. Sampling variability in the risk

estimates is assessed with bootstrap resampling.

Now consider the estimated covariate specific distributions of posttest risk shown in

Figure 3. To calculate these, we model the distribution of Y as a function of X and case-
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control status using a semiparametric location-scale model (Heagerty and Pepe, 1999):
Y = 9(77>X>D) +¢,

where g is a specified function and the cumulative distribution of €, denoted by Fjy, is un-
specified. The model is used in conjuction with the covariate specific DLRx (Y) function
and the baseline risk, 7(X), to calculate Ry x(t) and Ry x(t), the covariate specific posttest

risk distributions in cases and in controls, respectively. In particular, let
I(X,t) = {y : log(DLR y (y)) + logit(r(X)) < logit(¢)}
then
Rox(t)= [ dFo(y g0, X. D).
I(X,t)

The fitted DLR regression model and baseline risk value yield I (X,t). The empirical dis-
tribution of residuals from the fitted model for Y gives rise to Fy. The estimated covariate

specific marginal distribution of posttest risk is

In our analysis we chose a linear link function g and estimated coefficients are shown in Table

3. Sampling variability is assessed with the bootstrap.

It is widely appreciated that the performance of a risk prediction model on the data used
to fit the model can be optimistically biased. We used 10-fold cross validation to reduce bias
in estimates of the risks and their distributions. Results were almost identical. The results

reported here did not employ cross-validation.

5.4 Risk Thresholds and Decisions to Ascertain Y

Implicit in the above discussion is the existence of threshold values for risk that are used to

make decisions, in this case for or against the renal arteriography procedure. Risk thresholds

16



vary with the clinical context and may additionally vary amongst individuals. How to choose
a risk threshold? The classic decision theoretic solution to choosing a risk threshold is fairly
simple. Let Cy (and By) denote the cost (and benefit) associated with being classified as
high risk (and low risk) if the subject is in fact a control. Similarly let B; (and ) denote
the benefit (and cost) of being classified as high risk (and low risk) if the subject is a case.
Then the expected benefit of high risk classification for a subject whose risk of being a case
is given by r is rB; — (1 —7)Cy, where —C is interpreted as a negative benefit. His expected
benefit of low risk classification is —rC} + (1 — 7)By. The expected benefit with high risk
designation exceeds that of low risk designation if /(1 —r) > (By+ Cy)/(B1+ C1). In other
words, he can expect to benefit from the high risk designation if r > Cy/(B; + Cy), where
Co = By + Cy is the net cost of high risk classification for a control and By, = B; 4+ (Y is
the net benefit for a case. The appropriate high risk threshold is therefore Cy/(B; 4+ Cy),
a direct function of the cost-benefit ratio, Cy/B;. If a low risk threshold is of interest, a
similar exercise can be used to yield the value. In our example, the high risk threshold
of 0.4 corresponds to an implicit cost-benefit ratio of 2/3 while the cost-benefit ratio 1/9

corresponds to the risk threshold of 0.1.

Now suppose a subject has baseline risk 7(X) and high risk threshold 7 = Cy/(B; + Cy).
How should he formally decide to ascertain Y or not? Recall that if 7(X) > 7, in the
absence of Y he will choose to undergo the intervention associated with high risk status and

his expected benefit is r(X)B; — (1 — r(X))Cy. If he ascertains Y, the expected benefit is
r(X){Bi(1 — R1,x(1)) — CiR1 x (1)} + (1 = r(X)){—Co(1 — Ro.x(7)) + BoRo x(7)} (5.1)

assuming that the cost associated with ascertaining Y itself is negligible. The first and
second components of (5.1) are the expected benefit for a case and for a control, respectively.

Observe that, by rearranging (5.1), it can also be represented as,

{r(X)Bi(1= Ry x (7)) = (1=r(X))Co(1=Ro,x (7)) }+-{ (1=r(X)) Bo Ro x (1) =r(X)C1 Ry x (7) } }.
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The first and second components are counterparts of 7By — (1 —1)Cy and —rCy + (1 — 1) By,
the expected benefit of high and low risk classification, but now each element is weighted
by the corresponding probability of high or low risk designation conditional on case-control

status.

By subtraction, we see that if (X)) > 7, he expects to gain more by ascertaining Y than
not if

—T’(X)(Bl + CI)RLX(T) + (1 — T’(X))(BO + C(])RQX(’T) > 0.

Equivalently when r(X) > 7, there is benefit to be expected by ascertaining Y and basing
the decision on r(X,Y) if

(CO r(X

1—r(

)

) Rix(7)
X) Rox(1)’

< 7, one should ascertain Y and base the

A similar exercise indicates that when r(X
decision on (X, Y) if

Co_ r(X) (1= FRux(7)
B, 1—7r(X)(—Rox(1))

In our illustration for the man with risk 0.27 on the basis of baseline factors (Figure
3, right panel), if his high risk threshold is 7 = 0.40, we found R; x(0.40) = 0.63 while
Ry x(0.40) = 0.84. Implicitly for this subject, Co/B; = 2/3 as his choice of high risk
threshold is 7 = 0.4. Since his baseline risk 7(X) < 7, he should ascertain Y if

2 G r(X) (I1—-Rix(r)) 027(1-0.63)
37 B, C1-r(X)(1—Rox(r) 073(1—084) 0-86.

This condition holds. Therefore he should ascertain Y and base his decision on r(X,Y)
rather than on r(X). On the other hand, if his high risk threshold is 7 = 0.10, Cy/B; = 1/9
and we found R; x(0.10) = 0.05 and Ry x(0.10) = 0. He should not ascertain Y since the

condition
1 G r(X) Rix(r) 027005
9 B, 1-7(X)Rox(t) 073 0

does not hold.
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6 DISCUSSION

We have studied the diagnostic likelihood ratio function in this paper, a measure of test
performance that is popular in clinical medicine but is used in a simplified fashion in practice.
We developed methods to make inference about the covariate specific DLR function and
demonstrated two uses for the methodology. First we illustrated an investigation of covariate
effects on DLR where the covariate effects themselves were of interest. Second we showed
how estimation of the covariate specific DLR from a nested case-control study can allow us
to evaluate the posttest risk distributions that can be obtained with a marker. Methods for

making decisions about ascertainment of the marker follow.

We contrasted the covariate specific DLR function with the covariate adjusted association
between outcome and test result. The former pertains more to diagnostic and prediction
research than to etiologic research, but is less familiar to biostatisticians. Since DLRx(Y) is a
function of Y, in and of itself it does not provide a simple summary of test performance when
Y is continuous. One might consider standardizing marker values relative to their covariate
specific distributions in controls to make DLRx(.) functions comparable across markers
(Huang and Pepe, 2008) and across populations with different covariates. Development of
sensible summary indices will be needed to formulate test statistics for comparing markers

and for comparing subpopulations.
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Appendix: An algorithm to simultaneously fit two logistic

regression models

Suppose there are n subjects in the data set. Each subject has a record composed of disease

status, D, marker Y, and covariate vector X.

Write the two logistic regression models as
logitP(D = 11X) = 3§ + B X,

and

logitP(D = 1|X,Y) = Bo + AV,

where V' is a vector of covariates that are functions of (X,Y’). Transformations and interac-

tions as well as linear terms can be introduced in V.

1. Rearrange the data for each of the n subjects into 2 replicate records of the form
(D;, X;, Vi), i = 1,...,n. The two records have the same outcome D, and covariate

vectors.

2. Define an indicator variable I;; in the j™ data record of the i*" subjects with I;; = 1

and I;3 = 0 (or vice versa).

3. Define a vector with 4 components, Z;; = (1 — IL;;, (1 — 1;;)Xj, I, I;;V;;) for the 5th

record for subject 7.
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4. Fit a logistic regression model to D with predictor Z using the rearranged data. Gen-
eralized estimation equation (GEE) methods are employed with independence as the

working correlation structure.

5. A sandwich variance-covariance estimator for the regression coefficients is calculated
that accounts for the fact that each subject contributes a pair of observations (cluster)

to the analysis.

Note that in order to restrict the models so that coefficients associated with components of X
are the same in the pretest and posttest risk models, one includes it as a single covariate Xj;
rather than as two components (1 — I;;)X;; and [;;A(X;;) in step 3, where h(X;;) indicates

all terms related to Xj; in I;;Vj;.

REFERENCES

BOYKO, E.J. (1994). Ruling out or ruling in disease with the most sensitive or specific

diagnostic test: Short cut or wrong turn? Medical Decision Making 14,175-179.

BUNDY, D.G., BYERLEY, J.S., LILES, E.A., PERRIN, E.M., KATZNELSON, J. AND
RICE, H.E. (2007). Does this child have appendicitis? Journal of the American Medical
Association 298(4), 438-451.

CHEN, J., PEE, D., AYYAGARI, R., GRAUBARD, B., SCHAIRER, C., BYRNE, C.,
BENICHOU, J. AND GAIL, M.H. (2006). Projecting absolute invasive breast cancer
risk in white women with a model that includes mammographic density. Journal of

the National Cancer Institute 98(17),1215-1226.

COOK, N.R. (2007). Use and misuse of the receiver operating characteristic curve in risk

prediction. Clirculation 115,928-935.

21



COOK, N.R., BURING, J.E. AND Ridker, P.M. (2006). The effect of including C-reactive
protein in cardiovascular risk prediction models for women. Annals of Internal Medicine

145,21-29.

GAIL, M.H., BRINTON, L.A., BYAR, D.P., CORLE, D.K., GREEN, S.B., SCHAIRER, C.
AND MULVIHILL, J.J. (1989). Projecting individualized probabilities of developing
breast cancer for white females who are being examined annually. Journal of the

National Cancer Institute 81(24),1879-1886.

GIARD, R.W. AND HERMANS, J. (1993). The evaluation and interpretation of cervical

cytology: Application of the likelihood ratio concept. Cytopathology 4,131-137.

GOLDMAN, L., COOK, E.F., MITCHELL, N., FLATLEY, M., SHERMAN, H., ROSATI,
R., HARRELL, F., LEE, K. AND COHN, P.F. (1982). Incremental value of the exer-
cise test for diagnosing the presence or absence of coronary artery disease. Circulation

66,945-953.

HARRELL, F.E. JR. (2001). Regression Modeling Strategies with Applications to Linear

Models, Logistic Regression, and Survival Analysis. New York: Springer.

HEAGERTY, P.J. AND PEPE, M.S. (1999). Semiparametric estimation of regression quan-
tiles with application to standardizing weight for height and age in US children. Applied
Statistics 48,533-551.

HUANG, Y. AND PEPE, M.S. Biomarker evaluation using the controls as a reference pop-

ulation. Biostatistics (Under revision)

HUANG, Y., PEPE, M.S. AND FENG, Z. (8 MAY 2007). Evaluating the predictiveness of

a continuous marker. Biometrics doi: 10.1111/j.1541-0420.2007.00814.x.

JANES, H., PEPE, M.S. AND GU, W. (2008). Use and misuse of risk stratification tables

for evaluating risk prediction models. Submitted.

22



JANSSENS, A.C., DENG, Y., BORSBOOM, C.J., EIJKEMANS, M.J., HABBEMA, J.D.
AND STEYERBERG, E.W. (2005). A new logistic regression approach for the evalu-

ation of diagnostic test results. Medical Decision Making 25,168-177.

LEISENRING, W. AND PEPE, M.S. (1998). Regression modelling of diagnostic likelihood

ratios for the evaluation of medical diagnostic tests. Biometrics 54,444-452.

LEISENRING, W., PEPE, M.S. AND LONGTON, G. (1997). A marginal regression mod-
elling framework for evaluating medical diagnostic tests. Statistics in Medicine 16,1263-

1281.

LIANG, K.Y. AND ZEGER, S.L. (1986). Longitudinal data analysis using generalized linear
models. Biometrika 73(1),13-22.

NORTON, S.J., GORGA, M.P., WIDEN, J.E., FOLSOM, R.C., SININGER, Y., CONEWES-
SON, B., VOHR, B.R., MASCHER, K. AND FLETCHER, K. (2000). Identification
of neonatal hearing impairment: Evaluating of transient evoked otoacoustic emission,
distortion product otoacoustic emission, and auditory brain stem response test perfor-

mance. Far and Hearing 21,508-528.

PENCINA, M.J., DAGOSTINO, R.B. SR., DAGOSTINO, R.B. JR. AND VASAN, R.S.
(13 JUN 2007). Evaluating the added predictive ability of a new marker: from
area under the ROC curve to reclassification and beyond. Statistics in Medicine

d0i:10.1002/sim.2929.

PEPE, M.S. (2003). The Statistical Evaluation of Medical Tests for Classification and Pre-

diction. Oxford: Oxford University Press.

PEPE, M.S., ETZIONI, R., FENG, Z., POTTER, J.D., THOMPSON, M.L., THORN-
QUIST, M., WINGET, M. AND YASUI, Y. (2001). Phases of biomarker development

23



for early detection of cancer. Journal of the National Cancer Institute 93(14),1054-
1061.

PEPE, M.S., FENG, Z. AND GU, J.W. (1 AUG 2007,). Commentary on ‘Evaluating the
added predictive ability of a new marker: From area under the ROC curve to reclassi-

fication and beyond’. Statistics in Medicine doi:10.1002/sim.2991.

PEPE, M.S., FENG, Z., HUANG, Y., LONGTON, G.M., PRENTICE, R., THOMPSON,
[LM. AND ZHENG, Y. (2008). Integrating the predictiveness of a marker with its

performance as a classifier. American Journal of Epidemiology 167,362-368.

PEPE, M.S., JANES, H. AND GU, W. (2007;). Letter to the editor in response to: Cook
NR ‘Use and misuse of the receiver operating characteristic curve in risk prediction’.

Circulation 116,e132.

PEPE, M.S., JANES, H., LONGTON, G., LEISENRING W. AND NEWCOMB, P. (2004).
Limitations of the odds ratio in gauging the performance of a diagnostic, prognostic,

or screening marker. American Journal of Epidemiology 159,882-890.

PEPE, M.S., WHITAKER, R.C. AND SEIDEL, K. (1999). Estimating and comparing
univariate associations with application to the prediction of adult obesity. Statistics

in Medicine 18,163-173.

RIDKER, P.M., BURING, J.E., RIFAI, N. AND COOK, N.R. (2007). Development and
validation of improved algorithms for the assessment of global cardiovascular risk in

women. The Journal of the American Medical Association 297(6),611-619.

THOMPSON, .M., ANKERST, D.P., CHI, C., GOODMAN, P.J., TANGEN, C.M., LUCIA,
M.S., FENG, Z., PARNES, H.L. AND COLTMAN, C.A. (2006). Screen-based prostate
cancer risk: results from the prostate cancer prevention trial. Journal of the National

Cancer Institute 98, 529-534.

24



WANG, T.J., GONA, P., LARSON, M.G., TOFLER, G.H., LEVY, D., NEWTON-CHEH,
C., JACQUES, P.F., RIFAI, N., SELHUB, J., ROBINS, S.J., BENJAMIN, E.J.,
DAGOSTINO, R.B. AND VASAN, R.S. (2006). Multiple biomarkers for the pre-
diction of first major cardiovascular events and death. The New England Journal of

Medicine 355(25),2631-2639.

WILSON, P.W., NAM, B.H., PENCINA, M., DAGOSTINO, R.B. SR., BENJAMIN, E.J.
AND ODONNELL, C.J. (2005). C-Reactive Protein and Risk of Cardiovascular Dis-

ease in Men and Women From the Framingham Heart Study. Archives of Internal

Medicine 165,2473-2478.

25



Figure 1: Data simulated from a logistic regression model with normally distributed predic-
tors (X,Y) that are correlated to varying degrees. Shown are the population distributions of
covariate specific logDLR x(Y") in panel (a), and scatter plots of post versus pretest risks in
panel (b) p =0.1; (¢c) p=0.5; and (d) p = 0.9. High and low risk thresholds at 0.8 and 0.2
are displayed. In panel (a), the solid curve is the distribution of logDLR x(Y") when p = 0.1,
the dashed curve is for p = 0.5 and the dotted curve is for p = 0.9. In panels (b) through
(d), solid circles indicate case observations and diamonds indicate controls.
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Figure 2: Scatterplots of risk estimates with and without serum creatinine as a predictor,
for 98 cases and 98 controls in the renal stenosis substudy. For illustration low and high
risk thresholds of 0.1 and 0.4 are displayed. Panel (a) shows the pre and posttest disease
probabilities for cases, and panel (b) displays the probabilities for controls.

Post-test probability
Post-test probability

Pre-test disease probability Pre—test disease probability
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Figure 3: Estimates of covariate specific distributions of risk in the renal artery stenosis
study. Shown are curves for two individuals. Left panel is for a 57 year old female whose
BMI is 26.77kg/m? and has hypertension but no atherosclerosis disease or abdominal bruit.
Her baseline risk is 0.23. The right panel is for a 63 year old male whose BMI is 30kg/m?,
has hypertension and atherosclerosis disease but no abdominal bruit. His baseline risk is
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Table 1: Baseline (pretest) and augmented (posttest) models for risk of hearing impairment
based on a nested case-control substudy of the Neonatal Audiology for test B. Shown are
log odds ratios for P(D = 1|X) and P(D = 1|X,Y), and coefficients for covariates in the
corresponding model for logDLRx (Y'). Age is centered at 35 weeks. P-values in parentheses
are calculated by comparing estimates with standard errors.

Factor Pretest risk  Posttest risk log DLRx(Y)
intercept ~0.05(0.67) —0.58(<.001) —0.54(1.00)
Age (weeks) —0.04(0.04) —0.04(0.05)  0.002(0.27)
Location (booth vs room)  0.10(0.49)  0.15(0.34) 0.04(0.72)
Age x Location 0.07(0.02)  0.07(0.03)  —0.005(0.47)
Test result (Yes vs No) — 1.06(<.001)  1.06(<.001)
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Table 2: Baseline model for risk of renal artery stenosis based on 426 patients and diagnostic
likelihood ratio model based on a nested case-control substudy of serum creatinine. Shown
are log odds ratios for P(D = 1|X), and coefficients for covariates in the corresponding model
for logDLR x(Y"). Continuous variables are standardized to mean 0 and variance 1. P-values
in parentheses are calculated by comparing estimates with standard errors. Standard errors
for coefficients in the logDLR model are calculated by adopting the techniques described in
the appendix.

Factor Baseline Risk log DLRx(Y) log DLRx(Y)*
intercept —2.54(<.001)  0.06(0.56) 0.07(0.44)
gender (female) 0.38(0.18) 0.44(0.01) 0.47 (0.01)
age (per 10 yr) 0.61(<.001) —0.18(0.002)  —0.18(0.003)
hypertension 0.66(0.03) 0.03(0.81) 0.00

BMI (kg/m?) ~0.20(<.001)  0.03(0.06) 0.03(0.09)
abdominal bruit 1.41(<.001)  0.33(0.15) 0.00
atherosclerosis disease ~ 0.91(0.002) —0.45(0.01) —0.42(0.01)
log serum creatine — 0.92(<.001) 0.91 (<.001)

*After setting to 0 coefficients for abdominal bruit and hypertension.
g y
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Table 3: Effects of baseline covariates and outcome on the marker distribution in the renal
artery stenosis study.

Factor Coefficient (p-value)
Intercept —0.20(0.08)

Gender (female) —0.58(<.001)

Age (per 10 years ) 0.17(0.003)
Hypertension —0.07(0.56)
BMI(kg/m?) —0.01(0.29)
Abdominal bruit —0.18(0.30)
Atherosclerosis disease  0.48(0.001)

Renal artery stenosis 0.54(<.001)
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Figure 2: Scatterplots of risk estimates with and without serum creatinine as a predic-
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Table 2: Baseline model for risk of renal artery stenosis based on 426 patients and diag-
nostic likelihood ratio model based on a nested case-control substudy of serum creatinine.
Shown are log odds ratios for P(D = 1|X), and coefficients for covariates in the correspond-
ing model for logDLR x(Y"). Continuous variables are standardized to mean 0 and variance 1.
P-values in parentheses are calculated by comparing estimates with standard errors. Stan-
dard errors for coefficients in the logDLR model are calculated by adopting the techniques

described in the appendix.

Table 3: Effects of baseline covariates and outcome on the marker distribution in the renal

artery stenosis study.
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