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The actin nucleation factors Spire and Cappuccino regulate the onset of ooplasmic

streaming in Drosophila1-5.  Although this streaming event is microtubule-based, actin

assembly is required for its timing.  It is not understood how the interaction of

microtubules and microfilaments is mediated in this context.  Here we demonstrate that

Cappuccino and Spire have microtubule and microfilament crosslinking activity.  The spire

locus encodes several distinct protein isoforms (SpireA, SpireC, and SpireD).  SpireD was

recently shown to nucleate actin, but the activity of the other isoforms has not been

addressed.  We find that SpireD does not have crosslinking activity, while SpireC is a

potent crosslinker. We show that SpireD binds to Cappuccino and inhibits F-

actin/microtubule crosslinking, and activated Rho1 abolishes this inhibition, establishing a

mechanistic basis for the regulation of Capu and Spire activity.  We propose that Rho1,

cappuccino and spire are elements of a conserved developmental cassette that is capable of

directly mediating crosstalk between microtubules and microfilaments.
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Cytoskeletal elements must be coordinately regulated for cells to carry out complex

functions, such as the cytoplasmic movements required to disperse or localize intracellular

components5.  The formin homology (FH) protein Cappuccino (Capu) and the WASP homology

2 (WH2) domain-containing protein Spire are both required for the proper timing of one such

cytoplasmic movement, ooplasmic streaming in Drosophila1,3.   In wildtype oocytes, vigorous

ooplasmic streaming is associated with rapid growth during stages 10b-13, and is never observed

prior to this stage.  Mutations in capu and spire result in premature ooplasmic streaming,

beginning at stage 7/8 and continuing through stage 13.  This premature streaming interferes

with transport mechanisms required for the localization of early polarity markers, resulting in

disruption of dorsal-ventral and anterior-posterior body axes1,2.  Both the wildtype streaming

event and the premature streaming in capu and spire mutants are microtubule-based1.  Streaming

never takes place in oocytes lacking kinesin, and colcemid injection blocks premature streaming

in these mutants5,6.  Recent work suggests that streaming is restrained by the competing effects of

dynein and kinesin, and can be initiated by blocking dynein function7.  Thus, it is somewhat

paradoxical that Spire and Capu nucleate actin, but are not known to affect microtubule

architecture or dynamics.  Interestingly, the premature streaming seen in capu and spire mutant

oocytes can be recapitulated by injection of the actin-depolymerizing drug cytochalasin D into

wildtype oocytes, suggesting that actin assembly may restrict microtubule rearrangements

required for ooplasmic streaming8.  Presumably, microtubule and microfilament dynamics are

coordinated in oogenesis by a group of proteins that includes Spire and Capu, as well as one or

more upstream signals.  However, the signaling events that combine to encode a “switch” from

the non-streaming to streaming mode of the oocyte cytoskeleton, and how these signals are

translated to coordinate changes in microtubule/microfilament dynamics and architecture are not

known.

We previously showed that double heterozygosity for loss-of-function alleles of the small

GTPase Rho1 and capu results in 100% maternal effect lethality and abnormal microfilament

architecture at the oocyte cortex9.  Here we refer to these doubly heterozygous females as “Rho1-

capu” (see Supplementary Information, Fig. S1).  To determine if maternal lethality in Rho1-

capu is due to premature ooplasmic streaming, we visualized cytoplasmic movements in Rho1-

capu oocytes by timelapse confocal imaging of yolk granule fluorescence.  Like capu mutants,

these oocytes exhibit premature ooplasmic streaming beginning at stage 8 of oogenesis (Fig. 1c-
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c’ and Supplementary Movie 1c).  Similarly staged Rho1-capu oocytes assemble prominent

subcortical arrays of microtubules consistent with ooplasmic streaming (Fig. 1h; and see

Supplementary Information, Fig. S2).  We next asked whether the Rho1 mutation results in the

same phenotype.  Germlines genetically lacking Rho1 do not progress far enough to assess the

role of Rho1 in ooplasmic streaming9.  Thus, we have used two approaches to modulate the level

of Rho1 activity during oogenesis.  The wimp mutation, which reduces transcription at the Rho1

locus, was used in trans to loss-of-function alleles of Rho1, mimicking a hypomorphic mutation

(designated reduced Rho1)9. We also injected C3 transferase10, a specific peptide inhibitor of

Rho, directly into wildtype oocytes.  Reduced Rho1 and C3-injected oocytes both exhibit

premature ooplasmic streaming, and subcortical arrays of microtubules are observed in reduced

Rho1 at stage 8 (Fig. 1d-d’, i; see Supplementary Information, Fig. S3a; and see Supplementary

Movies 1d and 1f; see Methods).  Interestingly, we find that spire and capu also exhibit a

dominant genetic interaction (100% maternal-effect lethal).  Doubly heterozygous capu/spire

mutants stream prematurely and have a similar microtubule phenotype to Rho1 capu and reduced

Rho1 (Fig. 1e-e’, j, and see Supplementary Movie 1e; see Methods).  This is consistent with the

hypothesis that these proteins are both required to regulate the same molecular events in vivo11.

Although capu and spire have identical mutant phenotypes, the localization of these proteins

has not been addressed during oogenesis, the only developmental stage at which they are

essential2.  We made GFP-fusion constructs of capu as well as spire (isoforms D and C; see Fig,

3b) and expressed them in the germline using the UAS-Gal4 system12.  We find that Capu and

SpireD (a WH2-domain containing Spire isoform) are enriched at the cortex of both nurse cells

and oocyte, and are diffusely distributed throughout the cytoplasm of these cells (Fig. 2a-b’ and

see Supplementary Information, Fig. S3b-c’).  Both are found at much higher levels in the nurse

cells than in the oocyte, and do not exhibit asymmetry.  In contrast, SpireC-GFP is found in

punctate structures throughout the germline, and also associates with the oocyte cortex (Fig. 2c-

c’ and see Supplementary Information, Fig. S3d-d’).  Notably, a Rho1-GFP construct under

endogenous control mirrors the higher cortical accumulation of Capu and Spire C/D (Fig. 2d-d’

and see Supplementary Information, Fig. S3e-e’).

In mammalian cells, Rho acts through Diaphanous-related formins (DRFs), the microtubule

plus-end binding (+TIP) protein Eb1, and Adenomatous Polyposis Coli (APC), to stabilize

microtubules13-15.  We investigated the possibility that microtubule stability may be important in
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the regulation of ooplasmic streaming by staining oocytes with an antibody specific to the

detyrosinated form of !-tubulin (Glu-!-tubulin) that outlines stable microtubules.  In wildtype

oocytes, Glu-microtubules are restricted to the cortex, and are relatively less abundant at the

posterior pole, mirroring the overall distribution of oocyte microtubules (Fig. 2g, h-h’’).  In

Rho1-capu and reduced Rho1 oocytes, Glu-microtubules remain restricted to the cortex, but no

reduction in Glu-tubulin is visible at the posterior pole relative to the rest of the cortex (Fig. 2g,

i-j’’).  This likely reflects the overall loss of oocyte microtubule polarity that is observed in capu

and spire mutants (see Supplementary Information, Fig. S1)1-4.  Thus, it appears that the

mechanism through which Rho1 controls microtubule dynamics in Drosophila oogenesis is

distinct from that in mammalian cells.  Importantly, we find that Capu, Rho1, and Spire show

higher accumulation in the only region of the oocyte where microtubules are closely juxtaposed

to microfilaments (see Fig. 2e, f), raising the possibility that these proteins participate directly in

microtubule/microfilament crosstalk.

Although DRFs are well-characterized Rho effectors16-18, it has not yet been established if

Rho regulates the activity of non-DRF formins.  However, our genetic data implicate Rho1 in

regulating the timing of ooplasmic streaming, so we asked whether this phenotype reflects a

direct interaction between Rho1 and Spire or Capu.  We find that SpireD, SpireC, and Capu bind

to Rho1 in GST-pulldown assays showing a preference for Rho in its GTP-exchanged active

state (Fig. 3c,d; see Supplementary Information, Fig. S4).  We mapped the binding sites for Rho1

on SpireD, SpireC, and Capu to specific regions using smaller protein constructs in pulldown

assays (Fig. 3e,f).  Rho1 binds to the WH2-domain containing region of SpireD3 (Fig. 3b, e) and

to SpireC3 (Fig. 3b, f), which contains the conserved Spire-box and FYVE domains, as well as

the JNK-binding site.  The Rho1-binding region of Capu (CapuN3; aa 125-250) is N-terminal to

the FH1-FH2 module and does not contain any previously characterized domains (Fig. 3a,c).

We have designated this domain as the Rho-binding domain (RhBD*).  We also

immunoprecipitated Capu from ovary lysate with a Rho1-monoclonal antibody19, confirming the

in vivo relevance of this interaction (Fig. 3g; antibodies to Spire are not yet available).

DRF proteins are thought to be regulated through an inhibitory intra-molecular interaction

between the conserved N-terminal Rho binding and C-terminal Diaphanous autoinhibitory

(DAD) domains that is relieved by Rho GTPase binding16,18,20-23. Although Capu does not have a

DAD domain, because of its interaction with Rho1 we thought it possible that Capu activity is
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regulated by an autoinhibitory mechanism.  Although CapuN and CapuC associate in vitro (Fig.

3h), we do not observe any autoinhibitory effect of CapuN on actin nucleation by CapuFH2 (Fig.

4b) or in actin/microtubule crosslinking assays (Fig. 5d) suggesting that this self-association may

not have biological relevance in the context of oocyte development.  We next considered the

possibility that Spire might play a role in the regulation of actin nucleation by Capu.  In support

of this hypothesis, the two loci interact genetically, and the FH2 domain of Capu binds to SpireD

in vitro (Fig. 3i).  We mapped this interaction to a smaller construct, SpireD3, which contains the

four tandem WH2-domains and the Rho1 binding site (Fig. 3i).  We then conducted actin

polymerization assays to determine whether this interaction is inhibitory.  However, we did not

observe any inhibition of actin nucleation activity when either CapuFH1-FH2 (CapuC1) or

CapuFH2 were pre-incubated with various concentrations (ranging from equimolar to 5-fold

excess Spire construct) of SpireD or SpireD3 (Fig. 4f and data not shown).

To address the question of whether actin nucleation is sufficient to prevent premature onset

of ooplasmic streaming, we took advantage of the fact that several alleles of capu that have been

shown to cause premature streaming have mutations in the FH2-domain8.  We expressed and

purified CapuFH2 constructs with the point mutations L768H and P597T, corresponding to the

strong allele capuRK12 and weak allele capu2F, respectively.  The L768H mutation results in

complete loss of nucleation activity in vitro (Fig. 4c), yet CapuFH2(L768H) is still able to

dimerize (Fig. 3k), suggesting that this mutation creates a nucleation-dead FH2 domain.

Interestingly, the P597T mutation does not substantially affect the nucleation activity of

CapuFH2 (Fig. 4c), suggesting that nucleation is not solely responsible for the premature

streaming phenotype.

Since both capuRK12 and capu2F mutants stream prematurely, we asked whether the mutation

corresponding to the capu2F lesion disrupts some other essential function of the Capu protein.

Based on the localization of Rho1, Capu, and Spire at the oocyte cortex and apparent

coordination of microtubules and microfilaments required to regulate the onset of ooplasmic

streaming, we hypothesized that rather than regulating only actin dynamics and affecting

microtubule dynamics indirectly, these proteins are involved directly in this coordination. To

address this possibility, we performed in vitro microtubule/microfilament crosslinking assays24

using purified recombinant proteins.  Interestingly, CapuN1 demonstrated a potent actin filament

bundling activity (Fig. 5b), whereas CapuFH2 crosslinks F-actin and microtubules (Fig. 5c).
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Consistent with this result, we find that CapuN1 binds to F-actin while CapuFH2 binds to both

F-actin and microtubules in co-sedimentation assays (see Supplementary Information, Fig. S5a).

Moreover, CapuN1 exhibits self-association in pulldown assays (data not shown), suggesting

that it bundles F-actin through dimer- or oligomerization and likely has a single actin-binding

domain.  The minimum Capu construct with bundling activity (aa250-415) establishes a new F-

actin binding domain in a region of the protein that is not homologous to other known actin-

binding proteins.  We also tested the crosslinking activity of CapuFH2[L768H] and

CapuFH2[P597T], and found that the L768H mutation, which results in a more penetrant

phenotype in vivo, also abrogates crosslinking activity (Fig. 5f, and see Supplementary

Information, Fig. S5b).  However, the CapuFH2[P597T] construct shows attenuated crosslinking

activity (Fig. 5e, and see Supplementary Information, Fig. S5b), indicating that the phenotype

observed in capu2F mutants may be due at least in part to loss of this function.  This also suggests

that Capu-mediated actin nucleation is not sufficient to prevent premature ooplasmic streaming.

We also investigated whether SpireD and SpireC have any crosslinking/bundling activity.

We find that SpireC, which lacks the four tandem WH2-domains that are sufficient for actin

nucleation in vitro, has bundling and crosslinking activity similar to that of CapuFH2 (Fig. 5g).

However, the actin nucleating isoform SpireD has no crosslinking or bundling activity (Fig. 5h).

In light of the distinct subcellular distribution of SpireD and SpireC (see Fig. 2b-c’, and see

Supplementary Information. Fig. S3c-d’), this data suggests that the C and D isoforms of Spire

regulate distinct aspects of cytoskeletal architecture.

We next asked whether the crosslinking activity of CapuFH2 is affected by the presence of

Spire.  When added at equimolar ratios with Capu, SpireD and SpireD3 entirely block

crosslinking and microtubule bundling (Fig. 5i, k), whereas SpireD1, SpireD2 and SpireD4 have

no affect (Fig. 5j; data not shown).  Notably, we find that addition of equimolar activated Rho1

(Rho1-GDP-pNPP), but not inactive Rho1 (Rho1-GDP), restores crosslinking and microtubule

bundling by CapuFH2 in the presence of SpireD (Fig. 5l, m, respectively), and can compete with

the binding of SpireD to CapuFH2 in pulldown assays (Fig. 3j).  As the microtubule bundling

and crosslinking activities of SpireC are similar to that exhibited by CapuFH2, we examined the

affect of SpireD on SpireC bundling and crosslinking.  SpireD similarly blocks crosslinking by

SpireC, but did not affect its ability to bundle microtubules (Fig. 5n).  In contrast to the

interaction between CapuFH2 and SpireD, addition of activated Rho1 does not restore
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crosslinking by SpireC in the presence of SpireD (data not shown).  These new bundling and

crosslinking activities raise the possibility that Capu and Spire regulate the onset of ooplasmic

streaming by directly mediating coordination of actin assembly and microtubule architecture.

Moreover, our finding that Rho1 relieves the inhibition of CapuFH2-mediated crosslinking by

SpireD provides a mechanistic basis for the genetic interaction of Rho1, capu, and spire.

Our results suggest that Rho1 regulates the timing of ooplasmic streaming by regulating the

microtubule/microfilament crosslinking that occurs at the oocyte cortex.  In this model,

crosslinking antagonizes the formation of the dynamic subcortical microtubule arrays that are

required for ooplasmic streaming (Fig. 5o-p).  We propose that activated Rho1 transduces a

signal during stages 8-10b that promotes the crosslinking activity of Capu and SpireC by

preventing binding of SpireD to both Capu and SpireC (Fig. 5o).  Rho1 then becomes inactivated

at stage10b, presumably by a signaling event, allowing SpireD to bind to Capu and SpireC,

thereby inhibiting microtubule/microfilament crosslinking (Fig. 5p).  When signaling through

this pathway or the level of Capu and/or Spire protein is reduced through mutation, ooplasmic

streaming occurs constitutively from stage 8 through 13, resulting in the severe patterning

defects observed in these mutants (see Supplementary Information, Fig. S6).  That SpireD also

inhibits the crosslinking activity of SpireC suggests that a parallel regulatory mechanism exists

for SpireC mediated crosslinking.  Although we cannot rule out a role for Rho1 in regulating

actin nucleation by Capu and Spire, the mechanism established here by which Spire and Rho1

regulate the crosslinking activity of Capu does not seem pertinent to actin nucleation.  Viewed in

light of the fact that the P597T mutation in the FH2 domain, which is encoded by the capu
2F

allele, does not affect actin nucleation activity but is less efficient at crosslinking microtubules

and microfilaments, the crosslinking activity we describe appears to be an important aspect of

how ooplasmic streaming is regulated in vivo.

The data presented herein have several broader implications.  The finding that Capu and

Spire regulate each other’s activity suggests an explanation for the conserved co-expression of

these two de novo actin nucleation factors25, both of which create linear actin filaments11,16,18 and

are required to mediate the same developmental events2.  Moreover, this work establishes Rho1

as a direct regulator of a broader group of actin nucleating proteins, and is the first evidence for

how the activity of Spire and Capu is regulated to coordinate the ooplasmic streaming event in

vivo.  The direct interaction between Rho1 and Capu suggests an additional level of complexity
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to this mechanism.  It is thus possible that Rho1 may simultaneously regulate the nucleation and

crosslinking activities of Capu through an as yet unclear mechanism, further investigation of

which will require the expression of full-length Cappuccino constructs that contain the relevant

binding site.

To date, much work has been devoted to understanding the role of formins, and more

recently Spire, in controlling actin dynamics and nucleation.  However, DRF proteins also have

profound affects on microtubule dynamics and stability, with recent evidence indicating that

these affects are at least in some cases independent of the actin nucleation function14,15.  The data

presented here suggest that direct regulation of microtubule architecture may be a property

common to a larger subset of formins, as well as to at least one of the Spire protein isoforms.

The distinct mechanism by which Spire and Capu regulate microtubule/microfilament crosstalk

is consistent with the highly specialized function of these proteins in regulating germline

development in Drosophila.  Indeed, the mammalian homologue of capu, formin-2, is also

required only in the female germline, where it regulates proper chromosome segregation, another

process involving intimate coordination of microtubule and microfilament dynamics26.  Recently,

mutation at the formin-2 locus has been implicated in unexplained female infertility in humans27.

Thus, capu and spire appear to be elements of a highly conserved cassette that is required for the

very earliest stages of metazoan development.  Precisely how the activity of these proteins is

coordinated with developmental signaling circuits to allow for the proper regulation of ooplasmic

streaming or chromosome segregation will certainly provide interesting venues for future work.



Rosales-Nieves et al. 10 5/15/07

METHODS

Fly Strains and Genetics.  Flies were cultured and crossed on yeast-cornmeal-molasses-malt

and maintained at 25ºC in 50% humidity.  The alleles used in this study were capu
RK12

,

capu
EY12344

, Rho1
1B

, and spire
2F

.  All of these alleles were described previously with the

exception of capu
EY12344

, which contains a P-element insertion in the first common exon of the

capu ORF and is a putative null allele.  The wimp mutation was described previously
19

.  GFP-

Rho1 transgenic flies contain a GFP-Rho1 fusion gene that is expressed under the control of the

endogenous Rho1 promoter.  A ~7 kb HindIII-MluI genomic fragment encompassing the entire

Rho1 gene was subcloned into the Casper transformation vector, and intronic regions were

removed by substituting cDNA sequence for genomic between the ATG and stop codons.  GFP

was fused in frame at the ATG of Rho1.  GFP expression in transgenic flies carrying this

RhoGFP fusion is indistinguishable from Rho1 expression detected by antibody staining (data

not shown), except in the rare cases (~10%) where the transgene exhibits mosaicism in the

somatic (follicle) cells.  Images of such mosaic egg chambers are included in this manuscript in

order to more easily visualize the localization of Rho1 relative to the oocyte cortex.  GFP-Capu

was created by fusing GFP upstream of the ATG of CapuRA.   This GFP-Capu fusion construct

was cloned into pUASp as a KpnI-BamHI fragment and used to make germline transformants as

described
28

.  GFP-SpireC and GFP-SpireD were made as described above for Capu, except that

the fusions were made to the ORFs of SpireRC or SpireRD, respectively.  UAS transgenes were

expressed in the germline using pCog:Gal4; NGT40:Gal4; VP16nos:Gal4 triple maternal driver

lines
29

.  All transformant lines used in this study were mapped to a single chromosome and

shown to have non-lethal insertions.

Immunofluorescence.  Female flies were fattened for two days on yeast-cornmeal-molasses-

malt with supplemental dried active baker’s yeast at 25°C. Ovaries were dissected into

Drosophila Ringer’s buffer at room temperature and fixed using 1xPBS/6%

formaldehyde/heptane.  After three washes with PTW (1xPBS/0.1% tween-20), ovaries were

permeablized in 1% triton X-100 for 2 hours at room temperature and blocked using PAT

(1xPBS/0.1%tween-20/1% BSA/0.05% Azide) for two hours at 4 degrees (the subsequent steps

are performed at 4 degrees).  Antibodies were added at various concentrations (see below) in

PAT, and ovaries incubated overnight (approximately 24 hours) with primary antibody.  Primary

antibody was then removed and ovaries washed 3 times with GNS (1xPBS/0/1% tween-20/0.1%

BSA/2% normal goat serum) for 30 minutes each.  Secondary antibody (Alexa conjugates,

Invitrogen) in PbT (1xPBS/0.1% tween/0.1% BSA/0.05% Azide) was then added as appropriate

(1:500-1:4000), and incubated over two nights (approximately 36 hours).  Ovaries were washed

6-8 times with PTW, and mounted in 1xPBS/70% glycerol, flattened slightly, and visualized by

confocal microscopy. For microtubule visualization, ovaries were dissected into room

temperature Robb’s medium (55mM KOAc, 40mM NaOAc, 100mM sucrose, 10mM glucose,

1.2mM MgCl2, 1.0mM CaCl2, 100mM HEPES, pH 7.4) for a maximum of eight minutes, and

were fixed and stained immediately thereafter as previously described30, using FITC-labeled anti-

!-tubulin monoclonal antibody DM1A (Sigma), or clone 1D5 anti-Glu-!-tubulin (1:250;

Synaptic Systems) directly labeled using either an AlexaFluor monoclonal antibody labeling kit

(Invitrogen) or a Zenon labeling  kit (Invitrogen) and used at 1:200.  Immunofluorescence of

embryos was performed as described12.  The following antibodies were used in this study: !-vasa

(1:250, P. Lasko), !-oskar (1:3000, A. Ephrussi), !-phosphotyrosine (1:1000, clone 4G10,



Rosales-Nieves et al. 11 5/15/07

Upstate), !-staufen (1:1000, D. St. Johnston).  DAPI was used at 1µg/mL and AlexaFluor-

labeled phalloidin (Invitrogen) at 3 units/assay.

Confocal Microscopy.  Visualization was by confocal microscopy using a Zeiss LSM 510

META with excitation at 488nm or 543nm and collecting emission using a BP-505-550, BP-560-

615, or LP-560 filter.  In some cases, a Leica Confocal microscope with 488nm and 568nm laser

lines was used.  For DAPI we used a two-photon 780nm laser line and BP415-450 filter.  We

used a Plan-Neofluor 40x/1.3 Oil or Plan-Apochromat 20x/0.75 dry objective for imaging these

samples.

Live Imaging.  For live imaging, females were fattened as above and injected in the abdomen

with 0.4% trypan blue in normal saline.  Two hours after injection, ovaries were dissected into

ovarioles in halocarbon 700 oil on glass-bottom culture dishes (bioptechs).  As noted for other

premature streaming mutants
7,30

, we have observed some variation with respect to the speed of

ooplasmic streaming in wildtype and for the mutants described herein (and even in the later

stages for wildtype).  We find that Rho1-wimp mutants always exhibit slower streaming, most

likely due to the inability to completely eliminate Rho1 from the germline.  For injection of C3

transferase, wildtype egg chambers were dissected into halocarbon series 700 oil then injected

with GST-C3 transferase in injection buffer (5mM KCl, 0.1mM Na2PO4 pH 6.8) using a

microinjection apparatus. Concentrations of 10-50nM resulted in premature ooplasmic

streaming, whereas higher concentrations (100nM and above) resulted in rapid yolk granule

aggregation at the oocyte cortex (data not shown).  Time-lapse movies were recorded by taking

images of a single 1-2 micron central section of the oocyte every 10 seconds on a Zeiss LSM 510

META confocal microscope.  Excitation used a 543nm laser and detection used a 560 long pass

filter.  Projected images represent six consecutive time points.  All movies are provided at 30x

real time.

Plasmids and Constructs.  This study used the following constructs: CapuN (amino acids 1-

415), CapuN2 (amino acids 1-250) CapuN3 (amino acids 125-250), CapuC1 (amino acids 415-

1058), CapuC2 (amino acids 900-1058), CapuFH1-FH2 (amino acids 462-1058), CapuFH2

(amino acids 584-1058), SpireD (amino acids 1-488 of SpirePD) SpireD3 (amino acids 366-491

of SpirePD), Spire D1 (amino acids 1-198 of SpirePD), SpireC (full-length SpirePC), SpireC3

(amino acids 190-626 of SpirePC) Rho1 (full-length Rho1-PA), DN-Rho1(T19N), and CA-

Rho1(G14V).  These constructs were cloned into pCite (Novagen), pGEX (GE), or pRSET

(Stratagene) vectors using standard PCR cloning techniques.

Protein Expression.  Constructs in pGEX or pRSET vectors were transformed into Rosetta-

Gami B BL21(DE3) pLysS strains (Novagen). Cultures were inoculated and grown overnight at

37°C, diluted tenfold, and grown to OD600=0.8-1.0.  Expression was induced with 50µM IPTG,

cultures were transferred to 18°C, and grown overnight (at least 18 hours).  Cells were lysed by

sonication, freeze-thaw, and endogenous lysozyme expression from pLysS in lysis buffer (50mM

Tris pH 7.6, 100-300mM NaCl, 5% glycerol, 5mM DTT) with Complete protease inhibitor

tablets (Roche) or Phenylmethylsulfonyl fluoride (PMSF).  Triton X-100 was added to 1% and

lysates were incubated at 4°C for 30 minutes, and sonicated further as required.  Lysates were

centrifuged at 10,000 rpm for 30 minutes in a JA-17 or SS-34 rotor and the supernatants were

coupled to Glutathione-sepharose 4B (GE) or Fastflow Nickel-Sepharose 6 (GE) by 1-2 hour
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incubation at 4°C.  The matrix was washed three times with lysis buffer (without protease

inhibitors, and including 10mM Imidazole in the case of HIS-tagged constructs) and eluted two

times one hour with elution buffer (50mM Tris pH 8.0, 150mM NaCl, 5% glycerol, 5mM DTT,

20mM reduced glutathione or 200mM Imidazole).  Elutions were pooled, concentrated as

necessary using centricon/centriprep/microcon centrifugal filter devices (Millipore), dialyzed

into G-Buffer -ATP (2mM Tris pH 8.0, 0.1mM CaCl2) +5% glycerol, flash frozen in G-Buffer

(as above +0.1mM ATP) +50% glycerol, and stored at –80ºC.  In the case of C3 transferase, we

dialyzed the elutions into injection buffer (5mM Kcl, 0.1mM NaPO4 pH 6.8), and stored at 4ºC.

For GST-pulldown assays, proteins were expressed and purified as above, except that HEPES

was used instead of Tris.  GST-Rho1 was exchanged while bound to Glutathione-sepharose by

incubating with either GTP, GDP, or GDP-pNPP in exchange buffer (50mM HEPES pH 7.08,

20mM MgCl2 5mM EDTA, 0.1mM EGTA, 50mM NaCl, 0.1mM DTT) for 30 minutes at 30ºC.

Exchange was performed immediately prior to use in pulldown assays or prior to elution with

glutathione.

Pyrene Actin Polymerization Assays.  Rabbit skeletal muscle actin (5% pyrene labeled,

Cytoskeleton) was resuspended in G-Buffer (2mM Tris pH 8.0, 0.1mM CaCl2, 0.1mM ATP) at

4µM, and centrifuged at 120,000xg for 1 hour to remove endogenous nucleation centers.

Actin/pyrene actin was incubated at room temperature in ME (1mM MgCl2, 1mM EGTA) for 2

minutes to exchange bound calcium for magnesium. Polymerization was induced by addition of

10x KMEI (0.5M KCl, 10mM MgCl2, 10mM EGTA, 100mM Imidazole, pH 7.0) at 1:10 of final

volume.  Test proteins (as above) were diluted into G-Buffer and added concomitantly with

KMEI, keeping the final assay volumes constant throughout the experiment.  Fluorescence was

recorded with excitation at 365nm (minimum slit width, <2.5nm) and emission at 407nm (10nm

slit width) using a Perkin Elmer LS-50B fluorescence spectrophotometer.  Under these assay

conditions the samples did not exhibit any photobleaching.  Data were normalized taking the

initial fluorescence level as zero and the half-maximal value of fluorescence for 100nM

CapuFH2 to be 1.0 arbitrary units.

F-actin/Microtubule Co-sedimentation assays.  Rabbit muscle actin (Cytoskeleton), at 22.5µM

in G-Buffer, was polymerized by addition of 10xKMEI (as above) followed by 1 hour incubation

at room temperature.  Test proteins were diluted in G-Buffer and incubated with pre-assembled

F-actin at 4µM for 30 minutes. Test proteins were centrifuged for 30’ at 150,000xg prior to use

in the assay to remove any aggregates. The F-actin/test protein mixture was centrifuged for 90

minutes at 150,000xg, and the supernatant and pellet fractions analyzed by SDS-PAGE. For low-

speed co-sedimentation assays, the assay was performed as above except centrifuged at 20,000xg

for 10 minutes.  For microtubule co-sedimentation assays, bovine brain tubulin (Cytoskeleton)

was suspended in PEM buffer (80mM PIPES, pH 7.0, 1mM EGTA, 1mM MgCl2, 0.1mM GTP)

at 18.2µM.  Polymerization was induced by addition of tubulin polymerization inducer (80mM

PIPES, pH 7.0, 1mM EGTA, 1mM MgCl2, 0.1mM GTP + 50% glycerol) at 1:10 final volume,

followed by 20 minute incubation at 35ºC.  Microtubules were then diluted to 4µM and with G-

PEM, stabilized with 2!M paclitaxel, and incubated with test proteins in G-PEM + 2!M

paclitaxel for 30 minutes at room temperature.  Test proteins were centrifuged for 30’ at

100,000xg prior to use in the assay to remove any aggregates. The assay was then pipetted onto

an equal volume of microtubule cushion buffer (G-PEM+10% glycerol + 2µM paclitaxel) and
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centrifuged at 100,000xg for 45 minutes.  The pellet and supernatant fractions were analyzed by

SDS-PAGE or western blotting with anti GST antibody (1:1000-1:5000, ascites fluid, Babco).

F-actin/Microtubule crosslinking assays.  F-actin and Microtubules were polymerized as

above, except that Rhodamine-tubulin (Cytoskeleton) was mixed with unlabeled tubulin at 1:4.

Microtubules were stabilized with taxol as above and F-actin stabilized with Alexa488-

phalloidin.  Microtubules (1 µM final concentration calculated by monomer), and test proteins

(as indicated in the figure legend) were incubated in binding buffer (80mM PIPES pH 7.0, 1mM

MgCl2, 1mM EGTA, 2µM paclitaxel, 4U/100!L Alexa 488 phalloidin) for 15 minutes at room

temperature, F-actin (1µM final concentration calculated by monomer) was then added, and

incubated for an additional 10 minutes.  The assays were then pipeted onto slides using a wide-

orifice tip and visualized by fluorescence microscopy.  For quantification, the cross-linking was

carried out as above followed by low speed sedimentation (5,000 g for 10 minutes) as

described
24

.  The supernatant (S) and pellet (P) fractions were separated by SDS-PAGE followed

by Coomassie blue staining.

GST-pulldown assays.  GST-proteins bound to glutathione-sepharose were washed with

HEPES-LS buffer (20mM HEPES pH 7.5, 150mM NaCl, 10% glycerol, 0.1% Triton X-100).

Test proteins were synthesized in vitro using the TNT quick-coupled transcription-translation kit

(Promega).   For radiolabeling, 
35

S-Methionine was included in the IVT reaction.  IVT lysates

post-translation were diluted in HEPES-LS + PMSF, Pepstatin, AEBSF, Leupeptin, and

Aprotinin and pre-incubated with GST on glutathione sepharose for one hour at 4ºC to eliminate

non-specific binding species.  The pre-cleared lysates were then added to GST-protein in

HEPES-LS and incubated at 4ºC for one hour.  The sepharose matrix was then washed three

times with HEPES-LS and the bound fraction analyzed by SDS-PAGE followed by

autoradiography.  In each case, 5% input (post-clearing with GST) is shown.

Immunoprecipitation.  Ovary lysate was prepared by homogenizing dissected ovaries from

~200 females in 0.5mL L-buffer (PBS + 0.1% NP-40 + protease inhibitors (aprotinin, leupeptin,

PMSF)), followed by sonication and centrifugation to pellet debris. Lysate was incubated with

primary antibody in 0.5 mL L-buffer for 1hr at 4º C. Protein G sepharose was then added and the

reaction allowed to proceed overnight at 4º C. Analysis was conducted using SDS-PAGE

followed by Western blots.
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FIGURE LEGENDS

Figure 1 Rho1-capu, reduced Rho1, and capu-spire oocytes undergo premature ooplasmic

streaming.  (a-e’) Still confocal micrographs (a-e) and 5-frame confocal temporal projections of

confocal time-lapse movies (a’-e’) of wildtype and mutant oocytes stained with trypan blue to

visualize dynamic yolk granule movement.  Granules appear as discrete spots of fluorescence in

the still images.  Linear patterns of light in the temporal projections indicate coordinated yolk

granule movement generated by ooplasmic streaming.  Anterior is up in all images.  Wildtype

stage 10 oocyte (a, a’) during cytoplasmic streaming.  Note the spiral pattern formed by circular

movement of yolk granules (a’).  (b-f’) Unlike wildtype (b, b’), stage 7 oocytes from Rho1-capu

(c, c’), reduced Rho1 (d, d’), and spir-capu (e, e’) mutant mothers all undergo premature

ooplasmic streaming, as indicated by the spiral patterns of fluorescence seen in the temporal

projections (c’, d’, e’).  (f) Schematic of a stage 10 egg chamber, consisting of the germline

nurse cells (light gray) and oocyte (white), surrounded by somatic follicle cells (dark gray).

Boxed area indicates region of egg chamber shown in panels a-j.  Anterior is up.  (g-j) Confocal

micrographs of stage 7 oocytes from wildtype (g), Rho1-capu (h), reduced Rho1 (i), and spir-

capu (j) females stained with !-tubulin to visualize dynamic microtubules. Note subcortical

arrays consistent with microtubule-dependent ooplasmic streaming (arrowheads in h-j).  Scale

bars: 50 µm.

Figure 2  Rho1, Capu and Spire expression is enriched at the oocyte cortex where stable

microtubules are also localized. (a-d’) Rho1, Spire and Capu co-localize at the oocyte cortex.

Stage 7 10 egg chambers from females containing transgenes expressing GFP-Capu (a), GFP-

Spire isoform D (b), GFP-Spire isoform C (c), or GFP-Rho1 (d), and counterstained with

phosphotyrosine (red; not used in d, d’) to outline the oocyte plasma membrane and DAPI (blue)

to visualize the nuclei.  Higher magnification views of the follicle cells and oocyte cortex are

shown in a’-d’, respectively.  We intermittently observe mosaicism of Rho1-GFP transgene

expression in the somatic (follicle) cells (see Methods) as shown here to more clearly visualize

Rho1 enrichment at the oocyte cortex.  (e-f) Organization of the oocyte cortex.  (e) High

magnification view of the stage 10 wildtype oocyte cortex double labeled with !-tubulin (green)

to visualize dynamic microtubules and Glu-tubulin (red) to visualize stabilized microtubules.
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Note separation between apical follicle cell membrane (arrowhead) and cortical band of Glu-

microtubules (arrow).  (f) A schematic diagram of the oocyte cortex showing the relative

locations of the cytoskeletal components.  (g) Quantification of the relative pixel intensity for

Glu-microtubule staining at the anterior cortex (boxed region “A”) versus the posterior pole of

the egg chambers (boxed region “P”) such as those shown in h-j.  Error bars represent the

standard deviation from the mean obtained from quantifying 20 egg chambers.  (h-j’) Confocal

micrographs of stage 10 oocytes stained with antibodies recognizing detyrosinated (Glu-) tubulin

to visualize stabilized microtubules.  Stage 10 egg chambers from wildtype (h), reduced Rho1

(i), and Rho1-capu (j) females.  Anterior is to the left.  (h’-j’) Higher magnification view of the

oocyte cortex in h-j, respectively.  (h’’-j’’)  Close up view of the posterior pole of the oocytes in

h-j, respectively.  Note the reduced level of Glu-microtubules at the posterior in wildtype (h’’)

relative to the rest of the cortex.  Levels of Glu-tubulin are not reduced at the posterior relative to

the lateral cortex in Rho1 or Rho1-capu (i’’-j’’, respectively).  Scale bars: (a-d) 50 µm; (a’-d’)

20 µm; (e) 10 µm; (h-j) 20 µm; (h’-j”) 10 µm.

Figure 3 Protein-Protein interactions among Rho1, Capu, and Spire indicate a complex

regulatory network.  (a) Diagram of a canonical DRF protein and of the Capu protein.  The Capu

protein fragments used to map Capu/Spire/Rho1 protein-protein interactions are indicated.  (b)

Diagram of the Spire-A, -C, and -D protein isoforms. The Spire protein fragments used to map

the Capu/Spire/Rho1 protein-protein interactions are indicated.  (c) Rho1 binds directly to the N-

terminus of Capu.  
35

S labeled in vitro translated (IVT) CapuN3 (fourth panel from top) binds

preferentially to GST-Rho
GTP

 (lane 4).  This interaction is preserved in other Capu fragments that

span CapuN3 (top 3 panels; lane 4).  (d) All three Spire isoforms bind preferentially to Rho
GTP

.

35
S labeled IVT-SpireA (top panel), SpireD (middle panel) and SpireC (bottom panel) bind to

GST-Rho
GTP

 (lane 4).  (e-f) Using the Spire protein pieces depicted in b, Rho1 binding to Spire-

D and -C was mapped to the non-overlapping regions encompassed by SpireD3 (e) and SpireC3

(f).  While we reproducibly observe low levels of Spire-D2 and -D4 binding to Rho1
GTP

, neither

of these proteins affects Capu’s crosslinking or nucleation functions.  (g) Immunoprecipitation

from ovary lysate showing in vivo interaction between Rho1 and Capu.  Capu is precipitated by

an antibody to Rho1, but not when a non-relevant or no primary antibody is used.  (h) Capu

exhibits an intramolecular interaction. 
35

S labeled IVT-CapuC2 (input; lane 1) binds to GST-
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CapuN3 (lane 3).  (i) The Capu FH2 domain binds directly to the WH2-containing SpireD3

domain. 
35

S labeled IVT-CapuFH2 (input; lane 1) binds preferentially to GST-SpireD (lane 3)

and GST-SpireD3 (lane 6).  (j) Capu binding to Spire is disrupted by GTP-bound Rho1. 
35

S

labeled IVT-CapuFH2 (input; lane 1) binds to GST-SpireD (top panel, lane 3) and GST-SpireD3

(bottom panel, lane 3).  The interaction between CapuFH2 and either SpireD or SpireD3 is

disrupted by simultaneous addition of IVT-Rho1 in a dose-sensitive manner (lanes 4-6), and

abolished when added after the interaction has stabilized (lane 7).  (k) Capu FH2 domains

dimerize. 
35

S labeled IVT-CapuFH2 (input; lane 1) binds to GST-CapuFH2 (lane 3).  This

interaction is observed with wildtype, as well as mutant (L768H and P597T), FH2 domains.

Figure 4  Capu and Spire affect actin dynamics.  (a) Pyrene-actin polymerization assays were

conducted with varying concentrations of CapuFH2 (indicated in !M).  (b) Capu actin

nucleation activity is not subject to auto-inhibition.  CapuFH2 (1 µM) was pre-incubated with

CapuN1 (1 µM) in G-buffer, or an equal volume of G-buffer alone, and added to pyrene actin

polymerization assays.  CapuN1 alone (1 µM) had no affect on actin dynamics.  (c) The capu
2F

mutation does not affect actin nucleation.  CapuFH2, CapuFH2[L768H], or CapuFH2[P597T],

all at 1 µM, were added to polymerization assays.  Note that the L768H mutation (corresponding

to capu
RK12

) abolished nucleation activity whereas the P597T mutation (corresponding to capu
2F

)

did not substantially affect nucleation.  (d) CapuFH1-FH2 or was added to polymerization assays

at varying concentrations (indicated in !M).  (e) The affect of various concentrations of SpireD

or SpireC (indicated in !M) on polymerization kinetics was assayed as above.  (f) Capu and

Spire do not affect each other’s actin nucleation activity.  CapuFH1-FH2 (0.1 µM) or SpireD

(0.8 !M) alone, or CapuFH1-FH2 pre-incubated with SpireD, was added to pyrene actin

polymerization assays.

Figure 5  Rho1 regulates crosslinking of F-actin and microtubules by Capu and Spire.  (a-n)

Microtubule and microfilament bundling and crosslinking properties of Capu, Spire and Rho1.

Stabilized microtubules (1:5 rhodamine-labeled:unlabeled; 1 µM; middle column) and F-actin (1

µM; left column) were incubated with Capu, Spire and Rho1 proteins, the mixture was diluted

1:4, plated on glass coverslips then visualized by confocal microscopy.  (a) No protein added;

(b) CapuN1; (c) CapuFH2; (d) CapuN1 and CapuFH2; (e) CapuFH2
2F

 (CapuFH2 containing
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P597T mutation); (f) CapuFH2
RK12

 (CapuFH2 containing L768H mutation); (g) SpireC isoform;

(h) SpireD isoform; (i) CapuFH2 and SpireD; (j) CapuFH2 and Spire D1 protein piece; (k)

CapuFH2 and Spire D3 protein piece; (l) CapuFH2 and Spire D with Rho1
GTP

; (m) CapuFH2

and Spire D with Rho1
GDP

; and (n) SpireC and SpireD.  Final protein concentrations were:

CapuFH2 (300 nM), CapuN (300 nM), CapuFH2-2F (300 nM), CapuFH2-LH (300 nM), SpireA

(125 nM), SpireC (250 nM), SpireD (300 nM), SpireD1 (1 µM), SpireD3 (300 nM), and Rho1

(600 nM).  Scale bar: 50 µm.  Quantification of CapuFH2 wildtype and point mutant cross-

linking by low speed co-sedimentation is shown in Supplementary Information Fig. S5b.  (o-p)

Model for the regulation of microtubule/microfilament crosslinking and ooplasmic streaming by

Rho1, Capu, and Spire isoforms C and D.  Schematic of a wildtype oocyte prior to the onset of

ooplasmic streaming (o) and during ooplasmic streaming (p).  Close-up views are shown in the

insets.  Microtubules are red and cortical microfilaments are green.  Microtubule/microfilament

crosslinking by SpireC and Capu is necessary to prevent the assembly of subcortical arrays of

dynamic microtubules and the resulting streaming event (o).  Active (GTP-bound) Rho1

promotes microtubule/microfilament crosslinking by sequestering SpireD, thereby preventing it

from binding to SpireC and Capu.  Upstream signaling events result in GTP hydrolysis by Rho1,

allowing SpireD to bind to SpireC and Capu (p).  This blocks microtubule/microfilament

crosslinking, resulting in ooplasmic streaming.

Supplementary Information, Figure S1  Rho1 and Rho1-capu mutants exhibit patterning

defects similar to capu.  (a) Schematic of a stage 10 egg chamber, consisting of the germline

nurse cells (yellow) and oocyte (white), surrounded by somatic follicle cells (blue).  Boxed area

indicates regions shown in b-g.  Anterior is up.  (b-g) Confocal micrographs depicting posterior

localization of Oskar (b-d) and Staufen (e-g) protein in stage 10 oocytes from wildtype (b, e),

reduced Rho1 (c, f), and Rho1-capu (d, g) females.  Fc denotes follicle cells and ooc the oocyte

in (e).  (h) Schematic of a section at the posterior end of a cycle 14 embryo.  Somatic epithelium

is indicated in red and pole cells, the germline primordium, are indicated in green.  (i-k’)

Confocal photomicrograph projections (i-k) and cross-sections (i’-k’) of posterior end of cycle

14 embryos double labeled with antibodies to Vasa protein (green) to visualize pole cells and

phosphotyrosine (red) to outline cells.  Embryos derived from wildtype (i, i’), reduced Rho1 (j,
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j’), and Rho1-capu (k, k’) mothers.  Embryos derived from reduced Rho1 mothers have an

average of 6 pole cells per embryo compared to 15 pole cells per embryo for wildtype and 0 pole

cells per embryo for Rho1-capu (n=20 for each genotype).  Scale bar: 50 µm.

Supplementary Information, Figure S2 Actin cytoskeleton is disrupted in Rho1 and Rho1-

capu egg chambers.  (a-f) Confocal micrographs of stage 10 (a-c) and stage 7 (d-f) oocytes

stained with phalloidin to visualize actin.  FC indicates follicle cells and OOC denotes the oocyte

(a). High-magnification view of the oocyte cortex of stage 10 egg chambers from wildtype (a),

Rho1 (b), and Rho1-capu (c) females.  Note disorganization of the oocyte cortical actin in b, c.

(d-f) Posterior end of stage 7 egg chambers from wildtype (d), Rho1 (e), and Rho1-capu (f)

females.  Note the aberrant actin aggregation at the cortex in e, f.  (g - i ’) Microtubule

organization is disrupted in Rho1 and Rho1-capu egg chambers.  Confocal micrographs of stage

10 oocytes stained with !-tubulin to visualize dynamic microtubules.  Stage 10 egg chambers

from wildtype (g), Rho1 (h), and Rho1-capu (i) females.  Anterior is to the left.  Note

accumulation and increased bundling of dynamic microtubules in the mutants.  (g’-i’) Higher

magnification view of the oocyte cortex in g-i, respectively.  Note the high level of !-tubulin at

the anterior cortex in wildtype (arrow in g’) that decreases in a gradient toward the posterior; the

gradient is lost in the mutants. Scale bars: (a-f) 10 µm; (g-i’) 20 µm.

Supplementary Information, Figure S3  C3 transferase-injected oocytes undergo premature

ooplasmic streaming.  (a-a’) Still confocal micrographs (a) and 5-frame confocal temporal

projections of confocal time-lapse movie (a’) of a C3 injected stage 7 oocyte undergoing

premature ooplasmic streaming, as indicated by the spiral patterns of fluorescence seen in the

temporal projection (a’).  Anterior is up.  (b-e’) Rho1, Capu and Spire expression is enriched at

the oocyte cortex.  Stage 7 egg chambers from females containing transgenes expressing GFP-

Capu (b, b’), GFP-Spire isoform D (c, c’), GFP-Spire isoform C (d, d’), or GFP-Rho1 (e, e’),

and counterstained with phosphotyrosine (red; not used in d’-e’) to outline the oocyte plasma

membrane and DAPI (blue) to visualize the nuclei.  Higher magnification views of the follicle

cells and oocyte cortex are shown in b’-e’, respectively.  Scale bars: (a-a’) 50 µm; (b-e) 50 µm;

(b’-e’) 10 µm.
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Supplementary Information, Figure S4  Protein-Protein interactions among Rho1, Capu, and

Spire indicate a complex regulatory network.  Non-cropped film images corresponding to the

similarly marked GST-pulldown panels in Figure 3.  As the gels shown range from 8-15%

acrylamide, the molecular weights of the IVT proteins are indicated.

Supplementary Information, Figure S5  Rho1 regulates crosslinking of F-actin and

microtubules by Capu and Spire.  (a) Binding of CapuFH2 and CapuN, but not Rho1GTP, to

purified microfilaments in co-sedimentation assays. Western blot analysis of the total pellet of

GST-CapuFH2, GST-CapuN or GST-Rho1GTP proteins incubated with F-actin followed by

centrifugation (1:1000 anti-GST ascites; upper panel).  Binding of CapuFH2, but not CapuN, to

purified microtubules in co-sedimentation assays. Western blot analysis of the total pellet of

GST-CapuFH2 and GST-CapuN proteins incubated with microtubules followed by

centrifugation (1:1000 anti-GST ascites; lower panel).  (b) Quantification of CapuFH2 wildtype

and point mutant cross-linking by low speed co-sedimentation.  CapuFH2 (wildtype), CapuFH2-

2F and CapuFH2-LH were cross-linked as in Fig. 5 d, f, g, then the mixture was centrifuged to

pellet microtubules and F-actin bundles cross-linked by the proteins as previously described24.

The supernatant (S) and pellet (P) fractions were separated and the percent of CapuFH2 protein,

microtubules, and F-actin found in the pellet fraction are given.

Supplementary Information, Figure S6  Model for the regulation of

microtubule/microfilament crosslinking and ooplasmic streaming by Rho1, Capu, and Spire

isoforms C and D.  In this model, microtubule/microfilament crosslinking by SpireC and Capu is

necessary to prevent the assembly of subcortical arrays of dynamic microtubules and the

resulting streaming event.  (a-e) Diagrams of the oocyte cortex in the various mutants used in

this study. Relevant proteins are diagrammed and labeled (f).  In each case, genetic mutation

reduces crosslinking activity and allows the premature assembly of subcortical microtubule

arrays and concomitant onset of ooplasmic streaming.  (a) Reduced Rho1 levels liberate the

majority of SpireD.  SpireD binds to SpireC and Capu, blocking microtubule/microfilament

crosslinking.  (b) In oocytes lacking Capu, microtubule/microfilament crosslinking is reduced

directly by removal of a protein with crosslinking activity.  (c) Reducing both Rho1 and Capu by

half results in decreased crosslinking both by decreasing the level of Capu and liberating more
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SpireD to inhibit crosslinking by Capu and SpireC.  (d) Removal of Spire (both C and D

isoforms) results directly in reduced crosslinking by removing SpireC.  The absence of SpireD

prior to stage 10b is unlikely to have a substantial impact on the crosslinking activity of Capu

because GTP-bound Rho1 sequesters SpireD during these stages.  (e) Reducing Capu and Spire

(both isoforms) by half directly causes reduced crosslinking.  As described in d above, the

reduction in SpireD is likely to have little effect in this instance during stages 7-10b.

Supplementary Information, Movie 1a  Normal ooplasmic streaming in a wildtype stage 10

oocyte corresponding to the panels shown in Fig. 1a-a’.  Note the spiral pattern formed by

circular movement of yolk granule stained with trypan blue.  This 22 second time-lapse movie

represents 30 minutes of real time.

Supplementary Information, Movie 1b   Wildtype stage 7 oocyte corresponding to the panels

shown in Fig. 1b-b’.  Note the yolk granules stained with trypan blue do not exhibit coordinated

movements at this stage.  This 14 second time-lapse movie represents 15 minutes of real time.

Supplementary Information, Movie 1c   Premature ooplasmic streaming in a stage 7 Rho1-

capu oocyte corresponding to the panels shown in Fig. 1c-c’.  Note the spiral pattern formed by

circular movement of yolk granule stained with trypan blue.  This 22 second time-lapse movie

represents 30 minutes of real time.

Supplementary Information, Movie 1d   Premature ooplasmic streaming in a stage 7 reduced

Rho1 oocyte corresponding to the panels shown in Fig. 1d-d’.  Note the spiral pattern formed by

circular movement of yolk granule stained with trypan blue.  This 22 second time-lapse movie

represents 30 minutes of real time.

Supplementary Information, Movie 1e   Premature ooplasmic streaming in a stage 7 spir-capu

oocyte corresponding to the panels shown in Fig. 1e-e’.  Note the spiral pattern formed by

circular movement of yolk granule stained with trypan blue.  This 29 second time-lapse movie

represents 30 minutes of real time.
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Supplementary Information, Movie 1f   Premature ooplasmic streaming in a stage 7 wildtype

oocyte injected with C3 transferase (a specific peptide inhibitor of Rho) corresponding to the

panels shown in Supplementary Information, Fig. 3a-a’.  Note the spiral pattern formed by

circular movement of yolk granule stained with trypan blue.  This 29 second time-lapse movie

represents 30 minutes of real time.
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Supplementary Information, Figure S1 Rho1 and Rho1-capu mutants exhibit patterning defects
similar to capu. (a) Schematic of a stage 10 egg chamber, consisting of the germline nurse cells (yellow)
and oocyte (white), surrounded by somatic follicle cells (blue). Boxed area indicates regions shown
in b-g. Anterior is up. (b-g) Confocal micrographs depicting posterior localization of Oskar (b-d) and
Staufen (e-g) protein in stage 10 oocytes from wildtype (b, e), reduced Rho1 (c, f), and Rho1-capu (d, g)
females. Fc denotes follicle cells and ooc the oocyte in (e). (h) Schematic of a section at the posterior
end of a cycle 14 embryo. Somatic epithelium are indicated in red and pole cells, the germline primodium,
are indicated in green. (i-k’) Confocal photomicrograph projections (i-k) and cross-sections (i’-k’) of
posterior end of cycle 14 embryos double labeled with antibodies to Vasa protein (green) to visualize
pole cells and phosphotyrosine (red) to outline cells. Embryos derived from wildtype (i, i’), reduced
Rho1 (j, j’), and Rho1-capu (k, k’) mothers. Embryos derived from reduced Rho1 mothers have an
average of 6 pole cells per embryo compared to 15 pole cells per embryo for wildtype and 0 pole cells
per embryo for Rho1-capu (n=20 for each genotype). Scale bar: 50 m.
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Supplementary Information, Figure S2 Actin cytoskeleton is disrupted in Rho1 and Rho1-
capu egg chambers. (a-f) Confocal micrographs of stage 10 (a-c) and stage 7 (d-f) oocytes
stained with phalloidin to visualize actin. FC indicates follicle cells and OOC denotes the oocyte
(a). High-magnification view of the oocyte cortex of stage 10 egg chambers from wildtype (a),
Rho1 (b), and Rho1-capu (c) females. Note disorganization of the oocyte cortical actin in b, c.
(d-f) Posterior end of stage 7 egg chambers from wildtype (d), Rho1 (e), and Rho1-capu (f)
females. Note the aberrant actin aggregation at the cortex in e, f. (g-i’) Microtubule
organization is disrupted in Rho1 and Rho1-capu egg chambers. Confocal micrographs of stage
10 oocytes stained with -tubulin to visualize dynamic microtubules. Stage 10 egg chambers
from wildtype (g), Rho1 (h), and Rho1-capu (i) females. Anterior is to the left. Note
accumulation and increased bundling of dynamic microtubules in the mutants. (g’-i’) Higher
magnification view of the oocyte cortex in g-i, respectively. Note the high level of -tubulin at
the anterior cortex in wildtype (arrow in g’) that decreases in a gradient toward the posterior; the
gradient is lost in the mutants. Scale bars: (a-f) 10 m; (g-i’) 20 m.
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Supplementary Information, Figure S3 C3 transferase-injected oocytes undergo premature
ooplasmic streaming. (a-a’) Still confocal micrographs (a) and 5-frame confocal temporal
projections of confocal time-lapse movie (a’) of a C3 injected stage 7 oocyte undergoing
premature ooplasmic streaming, as indicated by the spiral patterns of fluorescence seen in the
temporal projection (a’). Anterior is up. (b-e’) Rho1, Capu and Spire expression is enriched at
the oocyte cortex. Stage 7 egg chambers from females containing transgenes expressing GFP-
Capu (b, b’), GFP-Spire isoform D (c, c’), GFP-Spire isoform C (d, d’), or GFP-Rho1 (e, e’),
and counterstained with phosphotyrosine (red; not used in d’-e’) to outline the oocyte plasma
membrane and DAPI (blue) to visualize the nuclei. Higher magnification views of the follicle
cells and oocyte cortex are shown in b’-e’, respectively. Scale bars: (a-a’) 50 m; (b-e) 50 m;
(b’-e’) 10 m.
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Supplementary Information, Figure S4 Protein-Protein interactions among Rho1, Capu, and
Spire indicate a complex regulatory network. Non-cropped film images corresponding to the
similarly marked GST-pulldown panels in Figure 3. As the gels shown range from 8-15%
acrylamide, the molecular weights of the IVT proteins are indicated.
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Supplementary Information, Figure S5 Rho1 regulates crosslinking of F-actin and
microtubules by Capu and Spire. (a) Binding of CapuFH2 and CapuN, but not Rho1GTP, to
purified microfilaments in co-sedimentation assays. Western blot analysis of the total pellet of
GST-CapuFH2, GST-CapuN or GST-Rho1GTP proteins incubated with F-actin followed by
centrifugation (1:1000 anti-GST ascites; upper panel). Binding of CapuFH2, but not CapuN, to
purified microtubules in co-sedimentation assays. Western blot analysis of the total pellet of
GST-CapuFH2 and GST-CapuN proteins incubated with microtubules followed by
centrifugation (1:1000 anti-GST ascites; lower panel). (b) Quantification of CapuFH2 wildtype
and point mutant cross-linking by low speed co-sedimentation. CapuFH2 (wildtype), CapuFH2-
2F and CapuFH2-LH were cross-linked as in Fig. 5 d, f, g, then the mixture was centrifuged to
pellet microtubules and F-actin bundles cross-linked by the proteins as previously described
24

.
The supernatant (S) and pellet (P) fractions were separated and the percent of CapuFH2 protein,
microtubules, and F-actin found in the pellet fraction are given.
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Supplementary Information, Figure S6 Model for the regulation of
microtubule/microfilament crosslinking and ooplasmic streaming by Rho1, Capu, and Spire
isoforms C and D. In this model, microtubule/microfilament crosslinking by SpireC and Capu is
necessary to prevent the assembly of subcortical arrays of dynamic microtubules and the
resulting streaming event. (a-e) Diagrams of the oocyte cortex in the various mutants used in
this study. Relevant proteins are diagrammed and labeled (f). In each case, genetic mutation
reduces crosslinking activity and allows the premature assembly of subcortical microtubule
arrays and concomitant onset of ooplasmic streaming. (a) Reduced Rho1 levels liberate the
majority of SpireD. SpireD binds to SpireC and Capu, blocking microtubule/microfilament
crosslinking. (b) In oocytes lacking Capu, microtubule/microfilament crosslinking is reduced
directly by removal of a protein with crosslinking activity. (c) Reducing both Rho1 and Capu by
half results in decreased crosslinking both by decreasing the level of Capu and liberating more
SpireD to inhibit crosslinking by Capu and SpireC. (d) Removal of Spire (both C and D
isoforms) results directly in reduced crosslinking by removing SpireC. The absence of SpireD
prior to stage 10b is unlikely to have a substantial impact on the crosslinking activity of Capu
because GTP-bound Rho1 sequesters SpireD during these stages. (e) Reducing Capu and Spire
(both isoforms) by half directly causes reduced crosslinking. As described in d above, the
reduction in SpireD is likely to have little effect in this instance during stages 7-10b.


