
 

 

 

 

 

 

NOTICE: this is the author’s version of a work that was accepted for publication 

in the American Journal of Human Genetics. Changes resulting from the publishing 

process, such as editing, corrections, structural formatting, and other quality control 

mechanisms are not reflected in this document. Changes have been made to this work 

since it was submitted for publication. A definitive version was subsequently published in 

the American Journal of Human Genetics, volume 83, issue 2, pages 228-242 (August 8, 

2008). DOI 10.1016/j.ajhg.2008.07.005. 



 1  

Extensive copy-number variation of the 

human olfactory receptor gene family 

 

Janet M. Young1, RaeLynn M. Endicott1, Sean S. Parghi1, Megan Walker1, Jeffrey M. 

Kidd1,2, Barbara J. Trask1 

 

 

 

 

 

Corresponding author: Barbara J. Trask 

Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview 

Avenue N., C3-168, Seattle, WA 98109, USA.  

Email: btrask@fhcrc.org; telephone: 206 667 1470; fax: 206 667 4023. 

                                                

1 Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 

98109, USA. 

2 Current address: Department of Genome Sciences, University of Washington, Seattle, 

WA 98195, USA. 



 3  

Abstract 

As much as a quarter of the human genome has been reported to vary in copy number 

between individuals, including regions containing about half of the members of the 

olfactory receptor (OR) gene family. We have undertaken a detailed study of copy-

number variation of ORs to elucidate the selective and mechanistic forces acting on this 

gene family and the true impact of copy-number variation on human OR repertoires. We 

argue that the properties of copy-number variants (CNVs) and other sets of large genomic 

regions violate the assumptions of statistical methods commonly used to assess gene 

enrichment. Using more appropriate methods, we provide evidence that OR enrichment 

in CNVs is not due to positive selection, but is because of OR preponderance in 

segmentally duplicated regions, which are known to be frequently copy-number variable, 

and because purifying selection against CNVs is lower in OR-containing regions than in 

regions containing essential genes. We also combine multiplex ligation-dependent probe 

amplification (MLPA) and PCR to assay the copy number of 37 candidate CNV ORs in a 

panel of ~50 human individuals. We confirm copy-number variation of 18 ORs, but find 

no variation in this human diversity panel for 16 other ORs, highlighting the caveat that 

reported intervals often over-represent true CNVs. The copy-number variation we 

describe is likely to underpin significant variation in olfactory abilities among human 

individuals. Finally, we show that both homology-based and homology-independent 

processes have played a recent role in remodeling the OR family. 
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Introduction 

A first step in the perception of smells is recognition of odorants by olfactory 

receptors, or odorant receptors (ORs). ORs are seven-transmembrane G-protein-coupled 

receptors that are expressed in the nasal olfactory epithelium1. ORs comprise one of the 

largest gene families in mammalian genomes, with ~400 apparently functional members 

in the human genome2,3 and ~1200 apparently functional members in mice4,5. An 

exquisite yet mysterious transcriptional regulatory regime ensures that each neuron in the 

olfactory epithelium expresses only a single allele of a single member of the OR gene 

family6-8. The axons of neurons that have chosen to express the same odorant receptor 

gene converge in the olfactory bulb of the brain9, thus allowing integration of signals 

elicited in functionally identical neurons, and highly sensitive odorant detection. It has 

been difficult to comprehensively determine the odorant ligands that activate each 

olfactory receptor, but from initial studies it is clear that a combinatorial code operates, 

whereby one receptor type can respond to several different odorant molecules (perhaps 

with varying affinities), and a single odorous compound can be recognized by a number 

of different receptor types8. This combinatorial coding regime allows the detection and 

discrimination of far more odorant molecules than the number of distinct receptors in the 

genome, explaining how humans can detect thousands of odorants despite possessing 

only ~400 distinct functional OR genes. In this study, we investigate genotypic variation 

between humans in functional OR repertoire size that could explain some of the 

phenotypic variation observed between humans in our sense of smell.  

In addition to apparently functional ORs, the gene family also contains many 

members that have acquired inactivating mutations, rendering them pseudogenes2. The 
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proportion of the OR family that appears functional differs greatly between species, with 

about 50% in human and chimp10, 70% in rat11, and 80% in mouse and dog5,12. The 

proportion of intact ORs is also known to vary between human individuals, as at least 26 

OR genes are known “segregating pseudogenes”, containing single nucleotide 

polymorphisms (SNPs) where one allele encodes an apparently functional product, and 

the other encodes a pseudogene13. The relatively low proportion of intact genes among 

human ORs and other primates compared to rodents and dogs suggests that selective 

pressure to maintain a large functional repertoire is less strong in primates than in dogs 

and rodents. Several investigators have speculated that acquisition of trichromatic vision 

contributed to the declining importance of olfaction in primate ecology14-16. Here, we 

examine the selective pressures acting on copy-number variation in the human OR 

repertoire. 

Mammalian olfactory receptor genes are arranged in a number of genomic 

clusters that arose via numerous tandem duplications and less frequent interchromosomal 

duplications that seeded new clusters2,5. The human genome contains ~100 OR clusters, 

containing between one and 105 genes. Some human ORs have multiplied to relatively 

high copy number as part of a recent burst of segmental duplications (SDs) in the human 

genome17, including several ORs in subtelomeric regions18, pericentromeric regions5, and 

a large number of members of the 7E subfamily of OR pseudogenes2,19. Comparative 

genomic analyses of mammalian OR repertoires show that duplications and deletions that 

occurred after the divergence of various lineages explain the varying repertoire sizes of 

different species3,5,20, a mode of evolution known as birth-and-death evolution21. 
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Each genetic difference between species initially arose in the genome of a single 

individual and went through a period of polymorphism before becoming fixed in the 

population, either by genetic drift or through the action of selection22. It is therefore likely 

that the same duplication and deletion processes that have altered the OR family over the 

course of mammalian evolution are still at work today, resulting in OR repertoires that 

vary between members of a single species, with the likely phenotypic consequence of 

inter-individual variation in olfactory abilities. Indeed, we previously showed that several 

subtelomeric ORs are polymorphic in both copy number and genomic location in the 

human population18,23. Furthermore, numerous studies that report copy-number variable 

regions in the human genome include many intervals that contain OR genes (e.g., 24-26). 

Some studies report that genes involved in chemosensory perception are statistically 

significantly enriched in CNV regions26-28. These whole-genome studies used microarray 

technology, SNP data and high-throughput sequencing methods to identify thousands of 

regions spread throughout the human genome that contain deletions or duplications of 

several kilobases of DNA sequence in some individuals but not others, polymorphisms 

known as copy-number variants. 

We undertook a detailed study of OR-containing candidate CNVs in order to 

answer the following questions. Does OR enrichment in CNVs remain statistically 

significant after accounting for genomic clustering of ORs? Is OR enrichment in CNVs 

merely a consequence of the fact that about a quarter of ORs reside in segmental 

duplications, regions that themselves are enriched in CNVs29,30? Can copy-number 

variation data provide evidence for selective pressures on OR genes? Are ORs reported in 

candidate CNVs in genome-wide studies truly variable in copy number? Do reported OR-
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containing CNVs represent genomic deletions or duplications? What is the true range of 

functional OR repertoire size in the human population? And what is the mechanism of the 

mutational events that result in OR copy-number variation? 

Material and Methods 

CNV, segmental duplication, OR and V1R datasets 

We obtained a set of 29,107 candidate copy-number variable regions (CNVRs) 

(after excluding inversions) and their coordinates in NCBI’s Build 36.1 of the human 

genome assembly from the Database of Genomic Variants (The Centre for Applied 

Genomics, The Hospital for Sick Children, University of Toronto, updated Nov. 29th, 

2007)31. Many variants in this dataset overlap one another, so we condensed the dataset to 

a non-redundant collection of 15,376 candidate CNVRs using custom perl scripts. 

Segmental duplication coordinates17 were obtained through the UCSC Genome Browser. 

We identified the coordinates of OR and vomeronasal receptor family 1 (V1R) 

genes in the human genome assembly (NCBI Build 36.1) or in alternative genomic 

sequence sources using previously described procedures5,32. Our previous V1R study 

involved manual elimination of sequences that matched V1Rs very poorly; we modified 

the procedure to allow automated elimination of such sequences. Our modifications 

consisted of (1) using RepeatMasker with default settings (in addition to our usual run 

with the –nolow setting) and eliminating candidate V1Rs that fall entirely within a repeat; 

and (2) eliminating any candidate V1R without a BLAST match of E>10-5 in the NR 

protein database. The remaining 116 candidate V1Rs had a BLAST match of at least 

E=10-5 that contained either “pheromone”, “vomeronasal”, or “V1R” in the description, 
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implying that filtering was successful. An acedb database was used to help track 

relationships between OR and V1R genes and CNVRs33. 

We also determined the officially approved “HORDE” names for each of the OR 

genes we identified, by performing a BLAST search of each sequence to the HORDE 

database (kindly supplied in fasta format by Tsviya Olender, Weizmann Institute). In 

ambiguous cases where more than one HORDE gene is identical to an OR we found, we 

matched genomic coordinates to choose the correct gene name. In some cases, our 

assignment of a gene as intact or disrupted (pseudogene) disagreed with the HORDE 

assignment – analysis of these cases is provided in Supplemental Table 1. One such case, 

OR56B2, is one of the genes we find to be copy-number polymorphic. HORDE assigns 

this gene to be a pseudogene because it is missing a start codon in the typical place; we 

assign this gene as intact, as it is known that some olfactory receptors encode the start 

codon in an upstream exon23, so that lack of a start codon in the main exon may not be 

sufficient to call a gene disrupted. We therefore refer to this gene as OR56B2, rather than 

OR56B2P. Two V1R genes previously described as intact appear to be pseudogenes in 

the reference assembly, as discussed in detail elsewhere32. 

Simulation studies 

In order to determine the approximate statistical significance of OR enrichment in 

CNVRs and the number of ORs expected in CNVRs by chance (Table 1), we simulated 

5,000 datasets of genomic regions with the same characteristics as the real CNVR 

dataset. A single simulated dataset was generated as follows, and the entire process was 

repeated 5,000 times. First, we sorted the sizes of the real CNVRs in descending order. 
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We then imagined an artificial genome, consisting of one copy of each chromosome, in 

an order that we shuffled randomly before generating each of the 5,000 simulated 

datasets. The lengths of each chromosome reflect their length in the Build 36.1 genome 

assembly. A single imaginary, linear genome was formed by joining all chromosomes 

laid end-to-end. A large number of possible start positions were picked randomly within 

that single imaginary genome, using the runif function of R to sample from a uniform 

distribution, rounding positions to the nearest base-pair. Next, we paired a randomly 

chosen start position with the size of the largest real region and generated start and end 

coordinates of that simulated region within the single linear genome. If the simulated 

region spanned one or more boundaries between chromosomes in the artificial single 

genome, we converted the coordinates of the region to two or more smaller regions that 

together span the same parts of the artificial genome as the larger region, split at 

chromosome boundaries (a possible alternative strategy of rejecting regions spanning 

more than one chromosome would bias simulated regions away from chromosome ends). 

We continued by pairing another randomly chosen start position with the size of the next 

largest real region. If that simulated region overlapped by any amount with any region(s) 

previously simulated, new start position(s) were selected until a region was generated that 

did not overlap any previously chosen region. We continued until we had simulated non-

overlapping regions corresponding to all real region sizes and thus had produced a dataset 

of simulated regions with the same characteristics as our real dataset in terms of size 

distribution and total non-overlapping genomic extent covered. 
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Sequence analysis 

To identify possible additional OR-containing candidate CNVs, we performed 

bioinformatic analyses, as outlined in the text. We used each of the 4121 OR sequences 

identified from alternative genomic sequence sources as BLAST queries against the set of 

ORs we identified from the Build 36.1 reference genome assembly and performed simple 

filtering of BLAST results to determine that 47 of the alternative-source ORs did not 

have a match of at least 98% nucleotide identity over at least 95% of the length of the 

shorter of the two matching sequences and were thus candidate copy-number variable 

ORs. Manual inspection revealed that 11 of the “non-matching” ORs were likely to be 

derived from poor quality sequence as they mapped close to a gap between contigs in the 

BAC sequence. Another 11 non-matching ORs had a good match with overall percent 

identity below 98% (e.g., the alignment included a single <50-bp insertion/deletion 

difference) – these were eliminated from further analysis. At this point, multiple 

computational tools were used to compare genomic sequences surrounding the candidate 

variable ORs to identify possible alternative structural alleles and to examine their 

breakpoints. These tools included Dotter34, BLASTZ35, BLAST36, CLUSTAL W37, 

cross_match, RepeatMasker and BOXSHADE. For one OR, we found that the absence of 

a BLAST match was merely due to unusually high sequence divergence of the ORs and 

did not appear to represent an alternative structural allele. While this case might represent 

a set of interesting sequence polymorphisms, it is outside the scope of this study. The 

remaining non-matching ORs represent candidate copy-number variable genes and are 

discussed further in the text and detailed in Table 2 and Supplemental Tables 3 and 4. 
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DNA samples 

We obtained human BAC CTD1-2361F20 from BAC/PAC Resources (CHORI). 

Human genomic DNA was purified from lymphoblast cell cultures obtained from the 

NIGMS Coriell Cell Repositories (Camden, NJ) or purchased as DNA from the same 

source. Samples were from 52 individuals of varied geographic origins: eight African 

Pygmies including three Mbuti (GM10492-4) and five Biaka (GM10469-73), five Middle 

Eastern Druze (GM11521-5), nine Southeast Asians including five Melanesians 

(GM10539-43) and four Cambodians (GM11373, GM11375-7), five South American 

Indians (Karitiana, GM10965-9), four Central American Indians (Mayan, GM10975-6, 

GM10978-9), ten African-Americans (GM10731-40), and eleven Caucasians (GM00893, 

GM00946, GM01310, GM01805-6, GM01814, GM01953, GM08428, GM09948, 

GM10534, GM14492).  

MLPA assays and interpretation 

MLPA38 was performed using custom probes (Supplemental Table 5) with MRC 

Holland’s EK1 kit, according to the manufacturer’s “DNA Detection/Quantification” 

protocol. We were careful not to include known SNPs near the ligation sites of our 

MLPA probes, as these can interfere with hybridization and ligation38. Our probe mixes 

consisted of 0.8 pmol of each half-probe plus 7.8 μl SALSA DQ control mix (MRC 

Holland), diluted to a total volume of 200 μl with TE. Denaturation, hybridization, 

ligation and PCR were performed according to the protocol, except that samples were 

placed on ice while probe mix, MLPA buffer, ligation buffer mix and polymerase mix 

(MRC Holland) were added. Completed MLPA reactions were diluted 1:11 in water, and 
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1 μl of each diluted product was combined with 0.05 μl GeneScan 500 LIZ Size Standard 

and 10 μl Hi-Di formamide (Applied Biosystems). Products were separated and 

quantified using an ABI-3730 DNA Analyzer with 2-kV injection voltage and 2-sec 

injection time. GeneMapper 3.7 or 4.0 software (Applied Biosystems) was used to 

determine peak heights and areas and fragment sizes in base-pairs, using a peak window 

size of 11. 

Custom perl and R scripts were used to process peak heights, which we found to be a 

more reliable measure of copy number than peak areas. For each sample we ran, the peak 

heights for OR probe pairs were normalized to enable inter-individual comparisons, by 

dividing each peak height by the averaged peak height value for two control genes that 

should not vary in copy number, EXT1 and EP300. We eliminated a small number of 

samples for which large peaks (normalized height > 0.2) were observed for any of three 

DNA quality-control probes provided by MRC Holland (DQ64, DQ70 and DQ76) – 

when sample DNA quality is high, peaks for these probes are either absent or very small. 

After these steps, peak heights for each probe were combined across the three replicates 

for each DNA sample to obtain average and standard deviation values. A minority of 

peaks whose coefficient of variation between triplicate measurements from a single 

individual (standard deviation / average) exceeded 0.3 were considered unreliable, and 

the peak in that individual was excluded from further analysis. The final averaged values 

were then plotted and sorted by peak height to facilitate assessment of copy-number 

variation. If variation appeared to be present, samples were manually grouped into 

individuals with the same allelic state. We investigated the use of statistical methods to 

replace this manual analysis step, but find that with only ~50 samples and experimental 



 13  

noise, no simple, reliable method exists to solve this problem. Peak heights were then 

averaged for all individuals with the same allelic state, and averages were compared to 

infer relative copy numbers.  

Our assay included two probe pairs, each of which we deliberately designed to 

recognize two almost identical OR sequences (i.e. in a “normal” diploid individual would 

recognize four copies), due the difficulty of finding sequence differences that would 

enable design of specific probes. Our intentional use of probes that recognize multiple 

ORs was not always effective. In one case, a probe pair that recognizes OR51A2 and 

OR51A4, we efficiently detected a polymorphic deletion (4 copies vs. 3 or 2). However, 

in the second case, a probe pair that recognized both OR2A42 and OR2A1, results were 

ambiguous. No clear grouping of samples into different copy number was evident, yet the 

peak heights for this probe were much more variable among individuals than for most 

invariant control and OR probe pairs we have surveyed (coefficient of variation 0.19, 

whereas most invariant probes have CV<0.075). Polymorphic duplications are likely to 

be present for one or both of these genes, increasing the number of gene copies this probe 

pair would recognize to 5, 6 or higher, but experimental noise (which can be worse for 

some probe pairs than others) makes it difficult to distinguish groups with different copy 

numbers when starting copy number is high (e.g., 4 copies compared to 5 would result in 

a 1:1.25 peak height ratio, harder to detect than 2 copies compared to 3, a 1:1.5 ratio).  

Interpretation of results for a second probe pair (OR13C2) was also difficult, even 

though the sequence of the reference assembly suggests that the MLPA probes should 

match only one genomic location. Two samples appear to have lower peak heights than 

the other samples, but the mean peak heights for the two groups of samples do not have 
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the proportions expected for a true copy-number variable gene (e.g., 1:2, 3:4, etc.). In 

addition, the main group of samples has a rather variable peak height, suggesting that 

results for this probe pair are subject to experimental noise.  

PCR and sequencing 

PCR was performed using standard protocols, with Biolase DNA Polymerase and 

buffer (BIOLINE). Primer sequences are given in Supplemental Table 8. Annealing 

temperatures and detailed conditions for each reaction will be provided on request. For 

DNA sequencing, PCR products were purified using Sephacryl S-300 (Amersham 

Biosciences) and subjected to sequencing using a custom primer (Supplemental Table 8), 

Applied Biosystems’ BigDye Terminator v3.1, and an ABI3730 according to the 

manufacturer’s recommendations. 

 

Results 

Over 400 human ORs are reported to be variable in copy number 

We were intrigued by reports of enrichment of olfactory receptor genes in regions 

of copy-number variation (e.g.,27,28). We therefore obtained coordinates of 15,376 non-

overlapping candidate CNVRs from the Database of Genomic Variants, a collation of 

data from 46 publications (The Centre for Applied Genomics, The Hospital for Sick 

Children, University of Toronto)31. Note that each region in the database may represent 

several overlapping CNVs found in one or more studies – we use the abbreviation CNVR 

(copy-number variable region) here to denote an interval containing one or more variants, 
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and CNV (copy-number variant) to denote a particular segregating variant. Together the 

15,376 CNVRs span a total of 810 Mbp, ~25% of the genome. We also used our 

bioinformatics tools to locate all 896 olfactory receptor genes and pseudogenes in the 

same version of the genome assembly (NCBI Build 36.1). We eliminated 44 ORs derived 

from redundant sequence (the assembly contains three alternate haplotype sequences for 

the major histocompatibility complex region) or whose chromosomal assignment is not 

precisely known (e.g., chr8_random). 852 mapped ORs remained, of which 405 (48%) 

appear to be intact and 447 (52%) are pseudogenes (Supplemental Table 1).  

Comparing the coordinates of the ORs and candidate CNVRs, we find that 429 of 

the 852 (50.4%) human ORs overlap 68 candidate CNVRs, a remarkably high proportion. 

However, our experimental studies indicate that not all of these ORs truly vary in copy 

number, likely due to a combination of reported CNVR boundaries that overestimate the 

truly variable region, and false positive CNVRs (see below). We therefore restricted our 

computational analyses of copy-number variation to a subset of more reliable regions 

whose boundaries are defined at higher resolution. The Database of Genomic Variants31 

contains 453 CNVRs defined by Redon et al.28 using high resolution arrays (“500K EA”) 

that showed copy-number gain or loss in at least two individuals sampled and are thus 

less likely to represent false positive CNVRs. These 453 CNVRs comprise 102 Mbp 

(~3% of the genome) and overlap 140 (16.4%) of the 852 mapped ORs (Table 1), still a 

very significant proportion of the gene family. Similar fractions of intact ORs (62/405, 

15.3%) and OR pseudogenes (78/447, 17.5%) appear to be in CNVRs.  

Some studies have examined the statistical significance of enrichment of ORs and 

other functional categories of genes in CNVRs using hypergeometric tests (e.g.,27,28,39). 
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We were concerned that the clustered genomic arrangement of ORs (and other tandemly-

duplicated gene families) can result in individual CNVRs affecting multiple family 

members at once, resulting in a “jackpot” effect30 that invalidates the assumption made by 

hypergeometric tests that all members of a gene category behave independently40. 

Therefore, we used simulation studies to assess the statistical significance of the observed 

large overlap between ORs and CNVRs (Table 1, Methods). Other investigators have 

used a similar approach to determine the significance of some properties of CNVR 

datasets, such as GC and repeat content27. Briefly, we simulated 5,000 artificial CNVR 

datasets with the same length distribution as the real CNVR dataset and determined the 

overlap between each simulated CNVR set and the real OR coordinates. We used the 

mean overlap found in simulations as a baseline to determine the fold-enrichment of ORs 

in the real CNVR dataset and obtained a p-value for the observed data by determining the 

proportion (if any) of simulated datasets with the same or higher level of enrichment as 

that observed in the real data. We find that 4.21 times as many CNVRs contain ORs as 

would be expected if CNVRs were distributed randomly in the genome, and that such 

enrichment is highly unlikely to happen by chance (p < 0.0002).  

OR enrichment in CNVRs due to segmental duplications and diminished purifying 

selection, not positive selection 

We sought to distinguish between alternative explanations for the enrichment of 

ORs in CNVRs. One possible explanation is that CNVs are not randomly distributed in 

the genome, as assumed by our simulations. CNVRs are known to frequently coincide 

with regions of segmental duplication, perhaps because SDs are inherently unstable 

regions of the genome29,30. Furthermore, many ORs are found in regions of segmental 
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duplication, perhaps explaining their enrichment in CNVRs. Segmental duplications are 

sequences duplicated in more than one genomic location and may span as much as 

several hundred kilobases17. SDs are found in many genomic locations, are enriched near 

telomeres and centromeres, and together comprise ~5% of the human genome17. To 

determine the role of SDs in OR-CNV enrichment, we separately analyzed the 213 ORs 

found in SDs and the remaining 639 ORs. ORs in SDs indeed showed a greater CNVR-

enrichment (6.71-fold more CNVRs contain SD-ORs than expected, p < 0.0002) than 

other ORs (Table 1). However, ORs outside of SD regions were still significantly 

enriched in CNVRs (2.69-fold more CNVRs contained these ORs than expected, 

p=0.004). These findings argue that the frequent presence of ORs in SD regions is 

largely, but not solely, responsible for OR enrichment in CNVRs.  

A second possible explanation offered by some authors (e.g.,27) is that positive 

selective pressures could favor copy-number variation in ORs, if changes in the OR 

repertoire provide enhanced olfactory capabilities and are thus selected for as humans 

adapt to new environments (and new odors). If positive selection operates, we would 

expect intact ORs to be more highly enriched in CNVRs than OR pseudogenes, as 

variation in intact ORs could have phenotypic consequences that selection might act 

upon, whereas variation in OR pseudogenes could not. However, the similarity in CNVR 

enrichment levels between intact ORs and OR pseudogenes (15.3% vs. 17.5%, Table 1) 

indicates that positive selection has not driven OR-CNVR enrichment. This comparison 

between intact ORs and pseudogenes oversimplifies a complex issue: because intact ORs 

and pseudogenes are interspersed with one another, most CNVs affect several genes 

including ORs of both categories, and it is therefore not possible to distinguish which 
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OR(s) within the CNV might have been the target of presumptive selection. It remains 

possible that OR-containing CNVs rose to high frequency due to positive selection on the 

intact genes within them, carrying along neighboring pseudogenes by a “hitchhiking” 

effect resulting in approximately equal rates of intact OR and pseudogene enrichment in 

CNVRs. We therefore looked for CNVRs that contain solely intact ORs or solely OR 

pseudogenes. Although too few CNVRs remain for statistical analyses, we find that 

CNVRs that contain only OR pseudogenes are more common than those containing only 

intact ORs (data not shown), supporting our conclusion that it is quite possible for OR-

containing CNVs to accumulate in the absence of positive selection. 

We also examined the CNVR-enrichment of the 116-member human V1R 

vomeronasal receptor gene family (Supplemental Table 2). Like ORs, V1Rs also have a 

clustered genomic arrangement and are often found in SD regions. Unlike ORs, the V1R 

family consists almost entirely of pseudogenes32 so can serve as a neutrally-evolving 

“negative control” gene family. The vomeronasal system appears to have been 

dysfunctional since before the ape and Old World monkey lineages diverged41, and thus it 

is very unlikely that selection acts to favor or repress human CNVs that include V1Rs. 

The enrichment of V1Rs in CNVRs is at least as high as for ORs (4.60-fold more CNVRs 

contain V1Rs than expected, p < 0.0002, Table 1), despite the impossibility of positive 

selection favoring V1R-containing human CNVs. The fact that such high levels of 

enrichment in CNVRs are observed for a neutrally-evolving gene family demonstrates 

that CNVR-enrichment alone cannot be taken as an argument for positive selection being 

involved in that enrichment. We conclude that the observed enrichment of ORs and V1Rs 

in CNVRs likely reflects a combination of (a) their frequent presence in SDs (see above) 
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and (b) a depletion of CNVs in other regions of the genome due to purifying selection 

against copy-number change of dosage-sensitive genes, rather than the result of selection 

having favored OR- or V1R-containing CNVs. Moreover, our analyses hint that OR-

containing CNVs may be weakly selected against, as CNVRs show a slightly higher level 

of V1R-enrichment (which presumably reflects the rate of neutral CNV accumulation) 

than of OR-enrichment (4.38x versus 2.69x, considering only the subsets of genes outside 

SDs). However, differences in gene-family size and genomic organization make it 

difficult to test the statistical significance of the difference in CNVR enrichment between 

classes of genes. 

Bioinformatic methods provide genomic structures for 16 candidate OR-containing 

CNVs 

We identified pairs of genomic sequences representing the two alleles of 16 

candidate CNVs containing a total of 28 ORs (Table 2 includes the CNVs we have 

confirmed experimentally, and Supplemental Tables 3 and 4 list all pairs of genomic 

sequences discussed here). Such analysis allows design of specific experimental assays 

for each allele and inference of the mutational mechanisms that gave rise to copy-number 

variation. Sequences of alternative alleles were already available for three OR-containing 

candidate CNVs42: we included two of these CNVs in our studies (OR8G1, 

OR8U8/OR8U9/OR8U1), but excluded the third as it maps close to an assembly gap in a 

complex, highly-duplicated pericentromeric region of chromosome 22 and thus might 

reflect assembly problems rather than true structural variation. We identified 14 

additional pairs of alternative structural allele sequences by comparing human genomic 

sequences from various sources, comprising the reference human genome assembly43, 
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BAC sequences from the HTGS/NR division of Genbank (excluding “low-pass” 

sequences), the Celera44 and Venter assemblies45, and a number of human fosmids, many 

of which were sequenced because they were deemed likely to represent structural 

variants25,46-48 (Washington University and Broad Genome Centers, unpublished). We 

searched for OR sequences identified from the alternative sources that appeared absent in 

the reference assembly, reasoning that if the reference assembly is indeed complete, the 

missing ORs likely reveal sites where the reference assembly represents the deletion 

allele of a segregating polymorphism. We compared the genomic sequences surrounding 

apparently missing ORs to the corresponding region of the reference assembly to 

distinguish true candidate CNVs from ORs that were actually present in both sources but 

with unusually high sequence divergence. Because these “alternative” sources do not 

represent complete assemblies, we did not perform a reciprocal analysis of ORs from the 

reference assembly that appear to be absent from the alternative sets. In addition to this 

analysis driven by OR coding regions, we compared the structure of the reference 

genome sequence and 26 fully sequenced fosmids to detect additional candidate CNVs. 

Each fosmid either contains at least one OR gene, or overlaps an OR-containing region of 

the reference genome assembly (Supplemental Table 3).  

Together, these bioinformatic analyses identified genomic sequences of 

alternative structural alleles for 16 candidate CNVs (several via more than one sequence 

source), containing 12 intact ORs and 16 OR pseudogenes (Table 2, Supplemental Tables 

3 and 4). These sequences allowed us to design PCR-based assays to the 8 candidate 

CNVs that contained intact ORs, finding that 7 are truly variable in the population while 

the eighth represents an artifact of the genome assembly (see below). Sequence analyses 
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of the alternative structural alleles revealed that one particularly interesting CNV arose 

from a genomic deletion that was both destructive and creative: parts of two ancestral 

ORs, OR8U8 and OR8U9, were joined to create a novel intact hybrid OR, OR8U1, while 

eliminating the ancestral genes. 

MLPA confirms 7 candidate copy-number variable ORs and fails to confirm 13 others 

Whole-genome methods provide evidence that over half of the OR repertoire may 

be variable in copy number. Even if CNVs containing ORs are not under strong positive 

selection, as our simulation studies suggest, they could still have interesting functional 

consequences on our olfactory abilities. In order to understand the functional 

consequences of this variation, we must first confirm bioinformatic predictions and array-

based candidate CNVs and accurately determine their genomic coordinates and allele 

frequencies. We therefore developed MLPA and PCR-based assays to survey copy 

number of a total of 37 ORs (33 intact ORs and 4 pseudogenes) and applied those assays 

to DNA samples from ~50 human individuals. Our DNA panel includes groups of 

individuals from diverse geographic locations, in order to allow detection of population-

specific common variants as well as variants found in multiple populations. Note that this 

approach means that variants that are rare and population-restricted may be missed 

because the number of individuals surveyed in each population is small. 

Multiplex ligation-dependent probe amplification (MLPA)38 is a method that can 

simultaneously assay copy number of at least 20 genomic regions relative to control 

regions that do not vary in copy number (Material and Methods). As proof of principle, 

we used MLPA to assay an X-chromosome sequence on DNA from cell lines containing 
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1, 2, 3, 4 and 5 X chromosomes and found that peak height and area correlate well with 

X-chromosome copy number, and that copy numbers between 1 and 5 can be readily 

distinguished by MLPA (data not shown). To date, we have used 25 MLPA probe pairs 

(Supplemental Table 5) to assay copy number of 24 ORs in a panel of ~50 human 

individuals, with each individual sampled in triplicate. Two probe pairs simultaneously 

assay both members of pairs of recently duplicated ORs, OR51A2/OR51A4 and 

OR2A1/OR2A42, with the assay readout reflecting copy number summed over both pairs 

(Material and Methods). We find that 8 probe pairs appear variable in copy number in our 

panel (OR2G6, OR2T11, OR4C11, OR4K2, OR8U8, OR51A2/OR51A4 and two probe 

pairs for OR56B2), 15 probe pairs appear invariant (see below), and results for 2 probe 

pairs cannot be interpreted unambiguously (OR13C2 and the OR2A1/OR2A42 probe pair) 

(Figures 1 and 2, Table 2, Material and Methods, Supplemental Table 6). PCR 

experiments confirmed additional candidate CNVs (see below). Follow-up bioinformatic 

analyses and PCR experiments show that several of these confirmed CNVs contain one 

or more other ORs in addition to the gene initially assayed (Table 2). Inferring copy 

numbers from MLPA peak heights, we find 4 polymorphic deletions (relative to the 

ancestral diploid state as determined by comparison to chimpanzee and macaque 

assemblies49,50), two polymorphic duplications, and another more complex case (OR2T11) 

where a relatively common deletion allele is present as well as one individual who may 

carry a duplication (Supplemental Table 7). We treat this finding of a multi-allelic CNV 

tentatively, as well as two other structural alleles suggested by only a single individual in 

our panel (the possibly multi-allelic OR4K2, see Figure 1; and the duplicated allele of 

OR2G6). Assaying a larger panel of individuals and/or independently extracted DNA 
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samples from the individuals concerned could determine whether these structural alleles 

are valid or merely a sporadic artifact of MLPA or of immortalized cell lines.  

Thirteen ORs appear invariant by MLPA yet lie within putative CNVRs 

according to the Database of Genomic Variants (OR2A14, OR2Y1, OR2Z1, OR4L1, 

OR5F1, OR6C1, OR10AD1, OR11L1, OR52B4, OR52E2 and OR52E5; as well as OR2F2 

and OR5D18 that were each assayed by two independent probe pairs). These ORs could 

be in real CNVs with very rare minor alleles (< 1%), might vary only in specific human 

populations not surveyed here, or could be truly invariant in copy number. Because many 

previously described CNVRs were defined by whole-genome surveys of limited 

resolution, e.g. comparative genomic hybridization on BAC arrays, the regions that are 

truly variable could be much smaller than the coordinates reported. Our results are 

consistent with suggestions by others30,47,51,52 that the true proportion of the human 

genome that varies in copy number is lower than the ~25% reported and show that fewer 

genes are variable in copy number than CNVR databases suggest. A large, unbiased 

screen for OR copy-number variation would be needed to predict the proportion of the 

~200 intact ORs in candidate CNVRs that are truly variable. Because of these caveats of 

published CNVR datasets, our statistical analyses of gene enrichment in CNVRs (see 

above) used only a higher-resolution, higher-confidence subset of CNVRs. The reduced 

dataset contains 12 of the 15 ORs we showed to be truly CNV by MLPA and/or PCR but 

only 4 of the 13 ORs we did not find to vary in copy number. These numbers demonstrate 

that the reduced set greatly is enriched for true copy-number variation compared to the 

unfiltered dataset of all 15,376 CNVRs. 
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PCR experiments confirm 6 candidate CNVs and reveal an artifactual deletion in the 

reference genome assembly 

With the sequence of alternative structural alleles in hand from our bioinformatic 

analyses, it is relatively straightforward to design PCR assays to detect each allele and 

infer copy number of ORs in the region. We were able to confirm and determine allele 

frequency for 6 CNVs containing 14 ORs, including some of those we had assayed by 

MLPA (Table 2, Supplemental Table 6). Together, these PCRs and our MLPA analyses 

show that at least 16 intact ORs and 2 OR pseudogenes vary in copy number.  

Our PCR experiments also show that one of the candidate CNVs we predicted 

bioinformatically is an artifact, representing a false ~62.4-kb deletion at chr11:49995935 

in the reference genome. This sequence is at chr11:50190615-50253011 in the Celera 

assembly and is also present in the Venter and chimpanzee assemblies and in the 

sequence of human BAC CTD1-2361F20. It encompasses three ORs, OR4C49P, 

OR4C45 and OR4C48P. We designed PCR assays specific to each putative allele, and 

found that no DNA sample amplified with primers for the deleted allele. All 51 human 

DNA samples tested were positive for the undeleted allele, as was DNA obtained from 

BAC RP11-1276E07, which was used to construct the genome assembly. Thus the 

BAC’s sequence (accession AP006622) is erroneously missing this ~62-kb region, even 

though it is present in our isolate of the clone. 

During our PCR, sequencing and bioinformatic analysis of candidate copy-

number variable ORs, we fortuitously noted and genotyped four single nucleotide 

polymorphisms (SNPs) where the derived alleles disrupt function of an OR, resulting in 
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three “segregating pseudogenes”13 (OR52E8 and OR4C45, neither of which was 

previously known to be a segregating pseudogene, as well as OR8G1; Table 2) that could 

have functional consequences53. Function of OR52E8 and OR8G1 can be lost in at least 

two ways, as they both exhibit inactivating SNPs and are contained within polymorphic 

genomic deletions. 

The minor allele frequencies we measured for OR-containing CNVs range from 

1% (the lower limit of our detection ability in ~50 individuals) to 45%. For all CNVs, the 

allele we infer to be ancestral (based on comparative analysis of chimpanzee assembly, 

and in one case also the macaque assembly) is more common than the derived allele 

among the individuals we surveyed. However, for one SNP the derived allele has risen in 

frequency to 54%. Most CNVs we surveyed were variant across several of the 

geographically diverse subpopulations we sampled. This observation indicates an ancient 

origin before humans migrated out of Africa, and/or that recurrent deletions and 

duplications have resulted in copy-number variation of the same OR in multiple 

subpopulations. Large-scale studies of geographically diverse populations also show that 

the majority of SNPs and CNVs are polymorphic in all populations studied54. As most 

variation is shared between populations, genotypes of individuals from the same 

population do not cluster with one another based on the relatively small number of CNVs 

we surveyed (data not shown). 

Overall, combining our CNV and SNP data, functional copy-number variation is 

great in our human DNA panel (Figure 2, Supplemental Table 7). No individual has the 

number of functional copies expected from the reference assembly, and almost every 

individual in our panel has a unique combination of functional losses and gains among 
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the ORs we surveyed. Summing up functional copy-number change over all genes 

assayed, we find that the individuals we surveyed have between 1 and 12 functional ORs 

fewer than would be expected from the reference genome assembly, and therefore that 

some individuals have a total of 11 more functional OR copies than others.  

The OR family is reshaped by both homology-based and homology-independent 

processes 

Our identification of pairs of sequences representing alternative structural alleles 

also allows us to infer the mutational mechanisms underlying OR copy-number change. 

Genomic deletions and duplications are known to occur by several mechanisms, 

including non-allelic homologous recombination (NAHR), non-homologous end-joining 

(NHEJ), retrotransposition and expansion of tandem repeats55. In most cases it is possible 

to deduce the mechanism of rearrangement by examining sequences around 

rearrangement breakpoints56. Recent studies47,51,57 have shown that human CNVs have 

arisen by all four of these mechanisms. Given the clustered genomic arrangement of the 

OR family, with many tandemly repeated sets of highly homologous sequences, we 

wondered whether NAHR would be largely responsible for rearrangements in OR-

containing regions. However, on comparing the breakpoint sequences of the seven pairs 

of alternative structural alleles we experimentally verified, we find that both NAHR and 

NHEJ play a role in CNV formation in OR-containing regions. Four deletion alleles 

contain only a few bases of homology (“microhomology”) at deletion breakpoints and 

were thus formed by NHEJ, and three other deletion alleles show long homologous 

stretches at their breakpoints (~900 bp – 10.6 kb of >=84% identity, with 34-212 bp 

stretches of 100% identity at breakpoints), and thus probably result from NAHR (Figure 
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3, Table 2). In one complex case (OR4C11; see Table 2 and Supplemental Figure 1), the 

derived structural allele appears to have arisen from the ancestral sequence by four 

separate, but closely spaced, deletions and two inversion events. Breakpoint analyses 

implicate NHEJ as the mechanism in all these events, but the fact that the region 

containing the three deletions is flanked by two very similar inverted copies of an L1 

repeat unit suggests that incorrect pairing of these repeats might have resulted in a loop 

structure within which the complex deletions and inversions could have occurred 

(Supplemental Figure 1).  

Discussion 

Whole-genome surveys show that as many as half of the ~850 olfactory receptor 

genes in the human genome could be polymorphic in copy number, a remarkable 

proportion. Although our experimental studies show that the truly variable fraction of 

ORs is likely to be lower than half, we observe significant variation in OR repertoire size 

among the ~50 human individuals we assayed. We show that at least 10 regions 

containing 16 intact olfactory receptor genes and 2 OR pseudogenes are variable in copy 

number in the human population (1-5 ORs per region, Table 2). Fourteen intact ORs are 

deleted in some individuals and not others, and 3 intact ORs are duplicated in a subset of 

individuals (for one OR, both deletion and duplication alleles appear to be present in the 

population). The polymorphic deletions and duplications we describe represent the raw 

material on which genetic drift and/or natural selection can act to fix gene duplications 

and gene losses. Such duplications and deletions have, over time, resulted in a “birth-and-

death” style of evolution in the olfactory receptor gene family5,21. We also describe SNPs 

that disrupt function of three of the ORs that we surveyed. Combining our CNV and SNP 
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genotyping results, the summed functional copy number of the ORs we surveyed varies 

between individuals by up to 11 ORs. A comprehensive analysis will no doubt reveal 

even more CNV ORs. Although we have not identified every CNV OR, our in-depth 

analyses provide reliable and absolute quantification of copy number at precise genomic 

locations, unlike more comprehensive microarray studies that generally scan the genome 

at lower resolution and provide only relative, approximate ideas of copy number. Our in-

depth study also allows us to infer that both homology-based and non-homologous 

processes are remodeling OR regions.  

Such genotypic variation in the OR family among human individuals could have a 

significant impact on our olfactory abilities. Deletions of one or more entire ORs could, 

in homozygous individuals, result in partial or total insensitivity to certain odorants that 

would normally be recognized by the missing OR(s). Reduction in the diversity of 

expressed receptor types might also reduce the complexity of the combinatorial code and 

hamper the ability to discriminate similar odorants. Duplications and heterozygous 

deletions would likely alter the number of olfactory epithelial neurons choosing to 

express the affected receptor, and thus might alter sensitivity to the odorants recognized 

by that receptor. Novel hybrid genes like OR8U1 might allow novel odorants to be 

recognized. It is also interesting to note that a subset of ORs could function outside the 

olfactory system, such as human OR1D2 that appears to mediate sperm chemotaxis 

towards its ligand, bourgeonal58. The functional impact of OR-containing CNVs could 

therefore extend to other phenotypes, including male fertility. Like ORs, the red and 

green opsin genes and a number of opsin pseudogenes are arranged in a tandem cluster. 

Recent unequal recombination events and gene conversions between members of the 



 29  

opsin cluster have resulted in duplications, deletions and hybrid genes segregating as 

human polymorphisms. Such events result in altered color perception or color-

blindness59, analogous to the altered chemosensory perception we predict results from the 

OR copy-number variation we describe here. 

Phenotypic variation in olfactory ability has indeed been observed in both human 

and mouse populations. The inability to smell (anosmia), reduced olfactory sensitivity 

(hyposmia), and enhanced abilities (hyperosmia) have all been reported. Often, the 

detection of all odorants is affected (generalized anosmia/hyposmia/hyperosmia)60,61, a 

phenomenon that is usually related to general health status (e.g., respiratory infections, 

head injuries), alterations in signal transduction pathways, or developmental disorders 

such as Kallmann’s syndrome (KAL1 [MIM 308700], KAL2 [MIM 147950], KAL3 

[MIM 244200], KAL4 [MIM 610628]). Of greater interest in the context of our study of 

variation in particular OR genes, specific anosmias, hyposmias and hyperosmias have 

been described that affect the ability to detect only certain odorants. Examples include 

anosmia for musk in some humans62 and for isovaleric acid in some mouse strains63, as 

well as human hyperosmia to asparagus metabolites64 and variation in detection 

thresholds for isovaleric acid, androstenone and androstadienone (see below). Such 

phenotypic variation could be a direct consequence of the variation in OR repertoire size 

we describe. 

Two recent studies provided the first links between variation in specific OR genes 

and human phenotypic variation. The inactive form of human OR11H7, caused by a 

nonsense SNP, was shown to be significantly less prevalent in individuals hyperosmic for 

isovaleric acid than in “normal” individuals53. SNPs that change the amino-acid sequence 
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of a second human OR, OR7D4, were shown to affect detection thresholds and valence 

(pleasantness) ratings for the testosterone-derived steroidal odorants androstenone and 

androstadienone and were shown to affect OR7D4’s ability to respond to those odorants 

in in vitro functional assays65. Interestingly, individuals who are heterozygous for OR7D4 

variants have phenotypes that are intermediate between the two classes of homozygous 

individuals, in terms of both odorant detection thresholds and valence65, suggesting that 

changes in the number of neurons that express particular receptor types can alter 

olfactory abilities. By analogy, even though individuals homozygous for OR deletions 

were relatively rare in our study, the many individuals who are heterozygous for OR 

copy-number changes might also possess an altered sense of smell. Conversely, in some 

cases, the combinatorial nature of olfactory coding, where multiple receptors can 

recognize multiple odorants8, may serve to reduce the impact of OR gene loss, as other 

receptors might be partially or fully redundant with the lost gene.  

Elucidating the functional consequences of the OR-containing CNVs we have 

characterized will require a great deal of additional work. To date, odorant ligands have 

been identified for only a handful of human ORs53,58,65-69. Although some of these ORs are 

in candidate CNVRs according to whole-genome studies, none is in the subset we have 

confirmed as truly copy-number variable.  

We have also shown that OR genes are statistically significantly enriched in 

CNVRs reported in whole-genome studies. We argue that ORs (and V1Rs) are not 

enriched in CNVRs due to positive selection, and that enrichment is more likely due to a 

combination of (a) the preponderance of these genes in segmentally duplicated regions, 

which are known to be more susceptible to copy-number variation than unique regions of 
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the genome29,30; and (b) that CNVs are depleted from other regions of the genome that 

harbor dosage-sensitive genes. Our findings apply to OR-containing CNVs as a class – it 

is still possible that a small minority of OR-containing CNVs are under positive selection. 

In contrast to neutrally-evolving OR-containing CNVs, other structural variants appear to 

confer advantageous new functions70 or predispose to disease71 and are likely to be under 

significant selective pressures. A recent paper by Nozawa et al.39 (see also comments by 

Zhang72) also suggested that OR-containing CNVs accumulate neutrally using arguments 

based on the distribution of summed OR copy numbers in the HapMap population28. Our 

results are consistent with Nozawa et al.’s findings, and we extend the arguments 

favoring neutrality with our use of appropriate statistical methods for measuring 

enrichment and our assessment of the important contribution of segmental duplications to 

OR-CNVR enrichment. We also show that whole-genome studies of CNVR likely over-

estimate the size of variable regions, in agreement with other recent studies47,51,52. Other 

known caveats of whole-genome studies include their bias in favor of finding larger 

CNVs, that they may be more effective in identifying deletions than duplications, that 

some studies avoided surveying regions of SDs whereas other studies focused solely on 

those regions, and that many studies relied on the reference assembly for experimental 

design and thus cannot survey sequences missing from that assembly. These caveats 

highlight the need for additional genotyping and characterization of structurally variant 

alleles at the sequence level46 as we have done here for a subset of OR-containing CNVs, 

before further conclusions can be drawn about the phenotypic consequences of variation 

in genes within putative CNVRs. Our conclusions that OR CNVs are accumulating 
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neutrally as a class are unlikely to be affected by these caveats, as the issues we describe 

are likely to affect intact ORs, OR pseudogenes, and V1Rs approximately equally. 

We describe methods for assessing the statistical significance of the enrichment of 

ORs (or any other class of genes) in a dataset of genomic regions. Many other studies 

have used hypergeometric tests that assume each gene has an independent chance of 

being in the regions of interest, but these CNVR datasets contain larger regions that can 

affect multiple related genes at once. The assumptions of the test are therefore violated 

for gene families with a clustered genomic arrangement, like the ORs, thus artificially 

inflating p-values by a “jackpot effect”30. Use of simulations to assess statistical 

significance avoids such problems and will be important for CNVR analyses like the one 

we describe here, as well as in functional analyses of other datasets of large genomic 

regions, for example gene ontology (GO) analysis of regions lost or gained in tumor 

samples73. 

In summary, we show that at least 16 intact ORs are variable in copy number in 

the human population. Together with 26 SNPs that result in “segregating pseudogenes” 

described by other investigators13 and three more revealed by this study, it is clear that 

huge variation exists between humans in the number of functional olfactory receptors we 

possess, and that this variation is likely to underlie observed phenotypic variations in 

human olfactory ability. 
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Figure Legends 

Figure 1. Representative MLPA results assessing copy number of three ORs. 

Normalized peak heights (means of triplicate measurements) are shown for three MLPA 

probe pairs, each surveyed in 46 individuals. Peak heights are proportional to genomic 

copy number. For each probe pair, samples are sorted in ascending order of peak height. 

Numbers in gray represent mean peak heights for each group of samples with the same 

allelic state, with standard deviations for each group in parentheses, and inferred copy 

number given as, for example, CN2 (copy number = 2). (A) The OR8U8 probe pair 

reveals a polymorphic deletion. (B) The OR4K2 probe pair reveals a polymorphic 

duplication. Note that the ratio of the mean peak heights of the genotype groups we have 

assigned is 2 : 3.0 : 4.0 : 5.9. We treat the copy-number assignment of the individual who 

appears to have 6 copies tentatively at present, as well as two other allelic states only 

observed in a single individual in our panel (three copies of OR2G6, three copies of 

OR2T11). Sampling a much larger panel of individuals, and/or DNA extracted 

independently from the individual in question (not derived from an immortalized cell 

line) would be needed to increase confidence in these observations. (C) The OR6C1 

probe pair does not reveal any copy-number variation, showing very consistent peak 

height across the panel of 46 individuals we surveyed. 

Figure 2. Number of functional copies of 19 OR genes examined in a panel of 51 

individuals. We summarize in this figure both copy-number variation and single 

nucleotide polymorphisms that would disrupt OR function (“segregating pseudogenes”), 

in some cases in the same gene. Supplemental Figure 2 shows copy-number variation 

alone. Each row represents one of the human individuals tested as part of our diversity 
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panel. Each column of the grid summarizes genotype data for an OR gene, or in three 

cases (*) for groups of OR genes (see below). Table 2 details the polymorphisms 

summarized in this figure. Genes are ordered according to number of copies gained or 

lost, averaged over the individuals surveyed. Full genotype data are also given in 

Supplemental Table 7.  

*: “OR8U8,etc”: a deletion CNV destroys function of OR8U8 and OR8U9, while 

simultaneously creating a novel hybrid gene, OR8U1; “OR56B2, etc”: a deletion removes 

all of OR56B2 and OR52N5 as well as half of OR52N1; and “OR4C11, etc”: a complex 

set of deletions removes OR4C11, OR4P4, OR4S2, OR4V1P and OR4P1P (Supplemental 

Figure 1). 

Figure 3. Cartoons of genomic structures and breakpoint sequence alignments of 

two representative sets of alternative structural alleles. (A) Non-allelic homologous 

recombination (NAHR) between duplicated ~10.7 kbp sequence blocks with 84% 

identity, of which 180 bp is shown aligned here. NAHR appears to have mediated a 

deletion that removes OR9G9. The “crossover” occurred somewhere within the 36 bp of 

identical sequence indicated as “NAHR region”; (B) Non-homologous end joining 

(NHEJ) mediated a deletion of OR56B2, OR52N5, and half of OR52N1 – two bases of 

microhomology are indicated at the deletion breakpoint. In each case, derived sequence 

spanning the deletion (middle rows) are shown aligned with the two ancestral sequences 

(outer rows). White letters on a black background indicate identical sequence; black 

letters on a white background indicate mismatched bases; “-“ symbols indicate alignment 

gaps. 
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Table 1. ORs and V1Rs are statistically significantly enriched in CNVRs 

 Number of 
genes in 
CNVRsa

 

Mean number 
of genes in 
simulated 
CNVR sets 

Gene 
enrichmentb

 

Number of 
CNVRs 
containing 
genes 

Mean number of 
CNVRs 
containing genes 
in simulated sets 

CNVR 
enrichmentb

 

P-valuec
 

all ORs 140 (16%) 28 5.00x 24 6 4.21x <0.0002 

intact ORs 62 (15%) 13 4.67x 13 3 4.11x <0.0002 
OR pseudogenes 78 (17%) 15 5.30x 20 5 4.19x <0.0002 

ORs in SDs 77 (36%) 7 11.08x 19 3 6.71x <0.0002 
ORs outside SDs 63 (10%) 21 2.99x 10 4 2.69x 0.0040 

Intact ORs outside 
SDs 

40 (12%) 11 3.59x 8 3 3.05x 0.0044 

OR pseudogenes 
outside SDs 

23 (8%) 10 2.32x 9 3 3.01x 0.0034 

V1Rs 23 (20%) 4 6.26x 10 2 4.60x <0.0002 

V1Rs in SDs 14 (29%) 2 8.84x 7 1 6.75x <0.0002 
V1Rs outside SDs 9 (14%) 2 4.30x 6 1 4.38x 0.0022 

 

a Number of genes overlapping CNVRs in a dataset comprising 453 regions reported by Redon et al.28
 in more than one 

individual using high resolution arrays.  

b Enrichment levels reflect how many more genes were in CNVRs (or how many more CNVRs contained genes) in the real 

dataset than occurred in the mean of 5,000 simulations. 

c P-values reflect the proportion of simulations in which at least as many CNVRs contained genes as observed in the real data. 



 45  

Table 2. Summary of experimentally validated CNVs and SNPs that affect functional copy number. A more detailed version of this 

table, including genomic coordinates, is provided as Supplemental Table 6.  

OR(s) affected 
Chr. 

location 
Description of alternative structural alleles  
(b36.1 = reference human genome assembly, NCBI Build 36.1) 

Allele 
frequencies 

Rearrangement 
mechanism 

Presumed ancestral, unduplicated (b36.1). OR is in unique 
sequence flanked by a recent inverted ~100-kb duplication 

99% OR2G6 1q44 
Presumed duplicated (MLPA) 1% 

Not determined 

Presumed ancestral, undeleted (b36.1). OR in one arm of recent 
inverted ~100-kb duplication (OR deleted from other arm) 

91% OR2T11 1q44 
Presumed deleted (MLPA) 9% 

Not determined 

Undeleted (b36.1) 72% 
OR51A2 11p15.4 8.6-kb deletion (fosmid AC193108) removes OR51A2 (also 

noted by Korbel et al.57) 
28% 

NAHR within 
ORs 

Undeleted (b36.1) 79% OR56B2, 
OR52N5, 
OR52N1  

11p15.4 24.7-kb deletion (fosmid AC193144) removes OR56B2, 
OR52N5 and half of OR52N1 

21% 

NHEJ between 
Alu repeat and 
OR52N1 

Undeleted structural allele (b36.1) also exhibits SNPs that can 
inactivate OR52E8 (dbSNP: rs12419602 and ss99307947) 

Intact 56% 
Pseud 37% OR52E8 11p15.4 

9.5-kb deletion (fosmid AC206475) removes OR52E8 7% 
NHEJ 

SNP: TAT 46% OR4C45 11p11.2 
SNP: TAG stop codon (dbSNP: rs3898634) 54% 

T->G SNP 

Undeleted (b36.1) 65% OR4C11, OR4P4, 
OR4S2, OR4V1P, 

OR4P1P 
11q11 Fosmids AC193142 and AC210900 contain complex alternate 

structure, with four deletions and some inversions (Supp Fig 1) 
35% 

NHEJ, but see 
text, Supp Fig 1 

Undeleted (Celera) 88% OR8U8, OR8U9, 
OR8U1 

11q11 7.6-kb deletion (b36.1) joins parts of OR8U8 and OR8U9 
creating hybrid gene OR8U1 

12% 
NAHR within 
ORs 

Undeleted (Celera) 99% OR9G9 11q11 
11.1-kb deletion (b36.1) removes OR9G9 1% 

NAHR outside 
ORs 

Undeleted (Celera) 55% 
OR8G1 11q24.2 851-bp deletion (b36.1) near end of OR. SNP on same haplotype 

also creates premature stop (dbSNP: rs4268525) 
45% 

NHEJ between 
OR and unique 
sequence 

Presumed ancestral, unduplicated 63% OR4K2 14q11.2 
Presumed duplicated 37% 

Not determined 
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Extensive copy-number variation of the human olfactory receptor gene family 

Janet M. Young, RaeLynn M. Endicott, Sean S. Parghi, Megan Walker, Jeffrey M. Kidd, 

Barbara J. Trask 

Supplemental Figure 1. Alternative structural alleles of a CNV region of chromosome 11 

containing several ORs, including OR4C11. A complex combination of at least four 

deletions with inversion(s) separates the two structures. The ancestral allele (prevalence 

65%) is represented by sequence from the reference human genome assembly, NCBI 

Build 36.1, (the Venter assembly provides sequence across most of this region, 

confirming authenticity of this structure) and the minor allele by fosmid sequence 

AC193142 (fosmid AC210900, derived from a different individual, has the same 

structure, confirming AC193142’s rearrangement). The four deletions have sizes 372 bp, 

66.1 kb (containing OR4C11, OR4P4 and OR4S2), 9.5 kb (containing OR4V1P) and 11.9 

kb (containing OR4P1P).  

MLPA results for OR4C11 confirm that 6 individuals have a homozygous 

deletion of this gene, 16 are heterozygously deleted, and 21 appear to have the “normal” 

two copies. PCR analysis of other genes in the region shows that the 6 individuals who 

are homozygously deleted for OR4C11 are also missing OR4P4, OR4S2 and OR4P1P, 

and that all individuals with at least one copy of OR4C11 also have at least one copy of 

those three genes. PCR also shows that OR4C6 is present in all individuals in our panel. 

Although we have not formally proven that all deleted individuals share the same 

structure as the two fosmids, our results strongly support the idea that the genomic 
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structure represented by these fosmids is indeed responsible for the OR4C11 deletions 

observed by MLPA.  

Arrowheads represent OR genes, and colored rectangles represent blocks of 

continuous sequence shared by the two alleles. Gray/blue/green rectangles represent L1 

sequences present in three highly similar copies in the region of the reference assembly 

shown (as well as additional copies nearby). Rectangles above the horizontal line 

represent forward strand similarity, and rectangles below the horizontal line represent 

inverted copies. Curved, shaded lines connect identical sequences in the two allelic 

structures, with yellow shading denoting inverted sequence. Pairing might have initiated 

between the two L1 copies flanking the region, perhaps creating some kind of loop 

structure, but deletion/inversion breakpoints all suggest non-homologous end-joining was 

responsible for creating the final structure.  

Supplemental Figure 2. Number of genomic copies of 19 OR genes examined in a 

panel of 51 individuals. This figure differs from Figure 2 in that it shows only copy-

number variation and ignores the effect of single nucleotide polymorphisms that would 

disrupt OR function. Figure 2 includes SNP data. Each row represents one of the human 

individuals tested as part of our diversity panel. Each column of the grid summarizes 

genotype data for an OR gene, or in three cases (*) for groups of OR genes (see below). 

Genes are ordered according to number of copies gained or lost, averaged over the 

individuals surveyed. 

*: “OR8U8,etc”: a deletion CNV destroys function of OR8U8 and OR8U9, while 

simultaneously creating a novel hybrid gene, OR8U1; “OR56B2, etc”: a deletion removes 
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all of OR56B2 and OR52N5 as well as half of OR52N1; and “OR4C11, etc”: a complex 

set of deletions removes OR4C11, OR4P4, OR4S2, OR4V1P and OR4P1P (Supplemental 

Figure 1). 
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