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ABSTRACT 

Dogs given nonmyeloablative conditioning and marrow grafts from two dog leukocyte antigen- 

(DLA) identical littermate donors developed stable trichimerism and stably accepted a 

subsequent kidney graft from one of the marrow donors without the need for 

immunosuppression. Here, we used trichimeras to evaluate strategies of adoptive immunotherapy 

to solid tumors, using the kidney as a tumor surrogate. Three DLA-identical trichimeric 

recipients were established by simultaneously infusing marrow from two DLA-identical donor 

dogs into a DLA-identical recipient conditioned with 2 Gy total body irradiation and given a 

short course of postgrafting immunosuppression. After confirming stable hematopoietic 

engraftment, a kidney was transplanted from one of the two marrow donors into each respective 

trichimeric recipient. Peripheral blood lymphocytes (PBL) from each kidney donor were then 

used to sensitize the alternate marrow donor. Donor lymphocyte infusions (DLI) from the 

sensitized dogs were given to the trichimeric recipients, whereupon chimerism, graft-versus-host 

disease (GvHD), and kidney rejection were monitored.  After DLI, we observed both prompt 

rejection of the transplanted marrow-donor kidney and disappearance of corresponding 

hematopoietic chimerism. Presumably, owing to shared minor histocompatibility antigens, host 

chimerism also disappeared and GvHD in skin, gut, and liver developed. The native kidneys, 

while showing lymphocytic infiltration, remained functionally normal. The current study 

demonstrated that under certain experimental conditions, the kidney, an organ ordinarily not 

involved in graft-versus-host reactions, can be targeted by sensitized donor lymphocytes.  
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INTRODUCTION 

 

 Graft-versus-tumor effects against hematological malignancies after major 

histocompatibility complex (MHC) identical allogeneic hematopoietic cell transplantation (HCT) 

are the result of donor lymphocyte activity against minor histocompatibility (H)-antigens 

expressed on hematopoietic cells [1,2]. Target minor H-antigens include both ubiquitously 

expressed antigens and those specific for hematopoietic cells. Given these observations with 

blood cancers, clinicians have been quick to explore whether allogeneic graft-versus-tumor 

effects might exist and could be therapeutically exploited in a variety of metastatic solid tumors. 

Malignancies tested include colon, breast, prostate, and renal cancers among others [3-7]. 

Outcomes have been variable. Convincing graft-versus-tumor effects have been reported in a 

minority of patients with colon and renal cell cancer and possibly breast cancer, while patients 

with other types of malignancy showed no responses. 

 Previous work in our laboratory evaluated whether graft-versus-host reactions, typically 

directed against hematopoietic cells, skin, gut, and liver, could be diverted to reliably include 

metastatic solid malignancies [8].  In these experiments, we used a canine HCT model, in which 

the kidney served as a surrogate tumor target. The experiment was designed to determine 

whether adoptive immunotherapy could result in rejection of a specific organ not ordinarily 

involved in graft-vs.-host reactions. Stable mixed chimerism in this model has been maintained 

by regulatory T-cells [9,10] and could not be dislodged by infusion of naïve donor lymphocytes 

[11]. In order to shift mixed to all-donor chimerism and induce graft-vs.-host disease (GvHD), 

donor lymphocytes were sensitized to host minor H-antigens [8]. Accordingly, after establishing 

mixed chimerism in DLA-identical littermate recipients, the marrow donors were given kidney 
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transplants from their respective mixed chimeric recipients, which they rejected within 3 to 5 

weeks. When marrow donor lymphocytes, harvested after kidney graft rejection, were injected 

into the recipients, mixed hematopoietic chimerism converted to full donor chimerism. However, 

while 2 of 5 dogs developed GvHD, the residual native kidneys which expressed the same minor 

antigens that were used to sensitize the donor were not targeted by the adoptively transferred 

lymphocytes. Thus, while marrow donors readily rejected their recipients’ kidneys and thereby 

became sensitized to the mixed chimeras’ ubiquitously expressed minor H-antigens as evidenced 

by elimination of host hematopoiesis and GvHD, the level of sensitization was apparently 

insufficient to induce immunologic damage to the recipients’ remaining kidneys. 

To further investigate this question, we developed a trichimeric model in which marrows 

from each of two DLA-identical littermate donors were simultaneously transplanted into a third 

littermate conditioned with 2 Gy total body irradiation (TBI) and given a short course of 

postgrafting immunosuppression [12]. A kidney heterotopically transplanted from one of the two 

marrow donors into the groin of each trichimera was stably accepted and then served as a solid 

organ surrogate for graft-versus-“tumor” reactions.  To this end, the other marrow donor was 

sensitized against H-antigens of the marrow/kidney donor, and sensitized lymphocytes were 

subsequently infused into the respective trichimeras.  The heterotopic location of the kidney 

grafts allowed for easy histological monitoring for lymphocyte infiltration and rejection. 

Additionally, we postulated that transplantation of the kidney would give rise to danger signals 

[13], thereby increasing the likelihood of becoming targets for lymphocytes sensitized to minor 

H-antigens. 
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MATERIALS AND METHODS 

Dogs 

Litters of beagles and beagle/mini-mongrel mixes were raised at the Fred Hutchinson 

Caner Research Center (FHCRC) and assessed for disease. They underwent a preventive 

medicine program against worms, distemper, parvovirus, adenovirus (type 2), parainfluenza 

virus, corona virus, rabies and canine papilloma virus. Dogs were 7–9 (median 8) months old and 

weighed 7.2–12.3 (median 8.5) kg. The study was approved by the Institutional Animal Care and 

Use Committee at the FHCRC (accredited by the Association for Assessment and Accreditation 

of Laboratory Animal Care, International). Selection of donor/recipient triplets included typing 

of litters and parents to determine identity of triplets for highly polymorphic microsatellite 

markers within DLA class I and class II regions [14] which was confirmed by DLA-DRB1 gene 

sequencing [15]. 

 

Marrow Grafts 

On day 0, recipients were treated with 2 Gy TBI and subsequent i.v. infusion of marrow 

from donors 1 and 2 as previously described (Fig. 1A) [12,16]. Bone marrow was aspirated from 

humeri of anesthetized donors by vacuum pump aspiration.  Briefly, the skin over the humeral 

heads was surgically prepared.  Using sterile techniques, a long aspiration needle was inserted 

into the marrow cavity of the shoulder joint. The needle was connected to a vacuum flask 

containing heparin via surgical tubing. Approximately 150 ml of blood-marrow mixture were 

collected per donor. The mixture was passed through 0.307 and 0.201-mm diameter stainless 

steel mesh screens. Nucleated marrow cell counts were corrected for white blood cell content. 

Marrows from both donors were infused into the recipients via the cephalic vein with 
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approximately a 2-hour delay between infusions.  The marrow grafts from individual donors 

contained a median of 4.6 (range 3.6-6.1) x 108 nucleated cells/kg. Dogs were given supportive 

postgrafting care. Immunosuppression consisted of oral cyclosporine (CSP), 15 mg/kg orally 

twice daily (BID) from days -1 to 35, and mycophenolate mofetil (MMF), 10 mg/kg BID 

injected subcutaneously from days 0 to 27 [17]. MMF dosing was adjusted according to clinical 

toxicity which consisted of gastrointestinal distress.  

 

Chimerism Analysis 

Chimerism analyses were done on PBMC and granulocytes following separation of blood 

on Ficoll (density =1.074), on marrow cells after buffered NH4Cl lysis of red cells [12], and on 

sections of kidney allografts collected at necropsy. For the latter, infiltrating lymphocytes were 

collected from the minced sections of resected kidneys after 16 hours of incubation (37oC, 5% 

CO2) using methods similar to those described [18] but without the use of enzymatic digestion. 

After overnight incubation of resected minced kidney tissue in RPMI medium (Gibco/Invitrogen, 

Carlsbad, CA) + 10% heat inactivated dog serum, the cells were layered over Ficoll (density 

1.074) and centrifuged at 1100 x g for 40 minutes. Cells at the interface were collected and 

washed in phosphate buffered saline by centrifugation. The contributions of recipient and donor 

cells to peripheral blood and other hematopoietic tissues and kidney were quantified by 

fluorescent variable number of tandem repeat (VNTR) PCR analysis, as described [12]. 
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Kidney Transplantation 

Kidney allografts from one of the marrow donors (donor 2) to the respective trichimeric 

marrow recipients were performed as described [19]. Briefly, donor 2 was anesthetized, a 

midline laparotomy performed, and the left kidney exposed. The ureter, renal vein, and renal 

artery were secured and transected. The kidney was removed from the body cavity and perfused 

with 4oC saline containing 10 U/ml heparin. The kidney was maintained in cold heparinized 

saline while the recipient was prepared for surgery. The kidney was subsequently transplanted 

into the trichimeric recipient’s right anterior thigh, the renal artery and vein anastamosed to the 

femoral artery and vein respectively, and the ureter implanted into the bladder [8]. Kidney graft 

recipients received no immunosuppressive therapy. The vascularity of the transplanted kidney 

was confirmed by an Ultrasonic Doppler Flow Detector (Parks Medical Electronics, Aloha, OR). 

At least two biopsies of transplanted kidneys were performed before completion of the study. 

Tissue was fixed in 10% buffered formalin and stained using hematoxylin and eosin for 

evaluation by microscopy. Kidney volume was calculated based on techniques for measuring 

xenograft tumor volume using the formula:  0.1667 (L x W2) where L (length) and W (width) 

were orthogonal measurements of kidney diameter [20]. 

 

Donor Sensitization and DLI 

Marrow donor 1 was sensitized to minor H-antigens from donor 2 (marrow + kidney 

donor) using a mean of 4.6 (range 1.6-8.5) x 107 PBMC (Fig. 1B). To that end, 50 ml of blood 

were collected from the kidney donor on each of three occasions, 10 days apart. Half the volume 

was injected intravenously and half was treated with ammonium chloride lysing solution (155 

mM ammonium chloride, 10 mM sodium bicarbonate, 0.1 mM EDTA), washed, and injected 
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subcutaneously into the flank of the first marrow donor.  Ten days after the third injection, 

leukopheresis was performed on donor 1 via a central venous catheter in the external jugular vein 

using a COBE 2997 continuous flow centrifuge (COBE BCT, Inc., Blood Component 

Technology, Lakewood, CO) [21,22].  

 

RESULTS 

 

Three stable hematopoietic trichimeric dogs received kidney transplants from one of their 

marrow donors 25 to 40 weeks after marrow grafting without postgrafting immunosuppression 

[12]. The hematological profiles and blood chemistries were in the normal range. Table 1 shows 

that host cell contributions among peripheral blood granulocytes at the time of kidney transplant 

and DLI ranged from 1–20% and from 16–50% among lymphocytes. Hematopoietic chimerism 

contributions from marrow donor 1 ranged from 18–96.9% and 5–53% among the granulocytes 

and lymphocytes, while those of donor 2 (marrow + kidney) ranged from 0.1–68% and 19–56% 

for the two respective populations.. Two of the trichimeric recipients (G362 and G643) did not 

receive immunosuppressive therapy since day 35 after marrow grafting. Dog G513 required 15 

weeks of cyclosporine (7.5 mg/kg with taper to 2.5 mg/kg) before successful resolution of 

GvHD; in this dog an additional 14 weeks elapsed between discontinuing CSP and kidney 

transplantation. Kidneys were negative for lymphocytic infiltration for 17 to 23 weeks before 

DLI as assessed by histologic examinations of needle biopsy specimens and measurements of 

kidney volume (Fig. 2, left column). Trichimerism remained stable and unchanged between 

kidney transplantation and DLI. 
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Effect of DLI on Kidney Allografts and Native Trichimeric Kidneys 

 In each of the three sets of littermates, marrow donor 1 was sensitized against 

marrow/kidney donor 2 by three injections of PBMC administered 10 days apart. Ten days after 

the last injection, a mean of 4.2 (range 2.5-5.1) x108 PBMC was harvested from sensitized 

donor 1 and injected into the respective trichimeric recipient.  

Within a mean of 7 (range 3-15) days after DLI, the transplanted kidney volumes began 

to increase in the three trichimeric recipients. For example, kidney volume in one of the dogs 

increased 162% in 28 days (data not shown). Biopsies of transplanted kidneys showed 

lymphocytic infiltration at various time points after DLI (data not shown). Samples taken at 

necropsy indicated extensive tubulitis and interstitial lymphocytic infiltration of transplanted 

kidneys consistent with acute severe rejection (Fig. 2, middle column). Periglomerular 

lymphocytic infiltration was observed in the trichimeric recipients’ native kidneys, although 

these infiltrations were by far less pronounced than those in the allogeneic kidneys (Fig. 2, right 

column). Seventy-three percent of cells obtained from cultured transplanted kidney tissue in dog 

G643 were from donor 1, and 27% were from donor 2, the latter possibly due to contaminating 

kidney cells (data not shown). Serum chemistries after DLI showed normal serum creatinine and 

blood urea nitrogen levels indicating normal function of the recipients’ native kidneys (data not 

shown). 

 

Chimerism 

 Until DLI, all three dogs had trichimerism which had been stable for more than 9 months 

(Table 1). After DLI, a rapid shift from mixed to nearly 100% donor 1 chimerism occurred in all 
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three dogs within a median of 14 (range 9-28) days. This is illustrated for dog G643 in Fig. 3. 

Before DLI, donor 1 (G641) contributed the least to the three hematopoietic systems in recipient 

dog G643, but after DLI, both granulocytes and mononuclear cells from donor 1 dominated the 

hematopoietic system. The shift from trichimerism to all donor 1 chimerism was also observed in 

nucleated cells collected from marrow and lymph node at necropsy (data not shown). Peripheral 

blood cell counts did not change significantly during the shift in chimerism (data not shown). 

 

GvHD after DLI 

All three dogs developed liver GVHD, as indicated by serum levels of alkaline 

phosphatase (1,646, 2004, and 3165 U/L), aspartate aminotransferase (355, 862, and 1,201 U/L), 

alanine aminotransferase (3,380, 5,440, and 5,618 U/L), and bilirubin (5.0, 7.3, and 7.3 mg/dL).  

Further, skin GvHD, characterized by inflammatory rashes of the skin of the ears, abdomen, 

nose, or oral mucosa was observed within 30 (G362), 23 (G513), and 32 (G643) days of DLI.  

All dogs developed diarrhea and lost weight. The diagnoses of GvHD were confirmed by 

histopathology following euthanasia (Figure 4). The skin showed changes ranging from minimal 

infiltration of mononuclear cells to the presence of apoptotic bodies. The liver showed 

lymphocytic infiltration in central venous regions and bile duct lesions confirming the diagnosis 

of GvHD. Atypical cell shapes within bile ducts of G513 indicated cell regeneration. The 

jejunum showed infiltration of mononuclear cells, while the ileum of dog G362 revealed multiple 

exploding crypts and crypt abscesses. Thus, all three dogs eventually developed three-system 

acute GvHD and were euthanized because of worsening condition. 
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DISCUSSION 

 

The current study was undertaken with the aim of targeting the kidney for allogeneic 

immune reactions, an organ that is not among the typical targets for graft-verus-host reactions; 

these usually include the hematopoietic system and epithelial cells from skin, gut, liver, and 

mucous membranes. The study was prompted by the desire to understand how graft-versus-

tumor effects, typically observed for hematological malignancies, could be extended to include 

metastatic solid tumor targets. Several clinical studies have used marrow transplantation to treat 

a variety of metastatic solid tumors but with very limited success [3,7]. In these studies, no 

tumor- or tissue-associated minor H-antigens were used to sensitize donors against the patients’ 

tumors. Therefore, it would seem reasonable to explore adoptive immunotherapy with 

specifically sensitized lymphocytes to achieve successful treatment of metastatic solid 

malignancies. Because no transplantable tumors exist for random bred dogs, a functioning 

kidney allograft with a unique set of minor antigens was chosen as a surrogate target since 

impairment of kidney function could easily be assessed by serum creatinine levels and 

histopathological examinations of percutaneous kidney biopsies. 

In an earlier study, we sensitized canine marrow donors by transplanting kidneys from 

their respective mixed hematopoietic chimeric recipients, which they promptly rejected [8]. 

Subsequent lymphocyte infusions from marrow donors into chimeras caused conversion of 

mixed to all donor chimerism and, in some cases, GvHD in skin, gut, or liver; however, the 

remaining native kidneys did not come under immunological attack. What explained this lack of 

graft-versus-kidney effect, a finding which was in striking contrast to the speed with which the 

marrow donors rejected kidneys from their chimeric recipients?  We hypothesized that native 
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kidneys lacked the appropriate “danger signals” [13] to attract lymphocytes and that these signals 

were present in the transplanted kidneys. Under this model, danger signals may be either 

constitutively expressed or, in the case of transplantation, induced upon stress, hypoxia, or 

trauma. 

Here, we attempted to address the hypothesis in stable trichimeras which had received 

marrow grafts from two DLA-identical littermates and a kidney graft from one of the marrow 

donors.  The marrow donor kidney was grafted heterotopically as a putative target for 

lymphocytes that had been sensitized to minor H-antigens. In all three cases, the kidneys were 

stably engrafted in the trichimeric recipients due to the induction of tolerance established by dual 

HCT. After immunizing the first marrow donors against minor H-antigens of the second (marrow 

and kidney) donors and then infusing sensitized lymphocytes into the marrow recipients, an 

immunological chain of events occurred that supported, in part, our experimental assumption that 

an organ, which is ordinarily not a target for GvHD reactions, might be targeted under 

appropriate experimental conditions. In all three cases, the allografted kidneys became promptly 

infiltrated with lymphocytes from the sensitized donors and were eventually rejected. 

Consistent with the kidney allograft rejection after DLI, the previously stable contribution 

of the marrow/kidney donor to the trichimeric hematopoiesis disappeared. Further, and perhaps 

to be expected owing to sharing of minor H-antigens among recipients and kidney/marrow 

donors, host hematopoiesis also disappeared along with the appearance of GvHD in classical 

target organs, skin, gut, and liver.  Somewhat contrasting with the widespread immunological 

damage in allografted kidneys, host skin, gut, and liver, and host and donor 2 hematopoiesis, the 

hosts’ native kidneys showed mild to moderate lymphocytic infiltration (Figure 2), but renal 

function was not impaired. These findings are consistent with the “danger signal” hypothesis 
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[13].  The basis of this model was that antigen presenting cells are activated by signals from 

injured cells that had been exposed to toxins, pathogens, and mechanical damage [23].  Also 

falling into this category were transplanted organs in which surgical and or ischemic damage 

occurred resulting in activation of antigen presenting cells. Thomas et al. [24]  showed that long-

term renal allografts were established in histocompatibility complex mismatched macaques 

treated with deoxyspergualin with or without immunotoxin (anti-CD3-CRM9, a mutant 

diphtheria toxin). The proposed mechanism of action of deoxyspergualin was the prevention of 

antigen presenting cell maturation, suppressed expression of costimulatory molecules, and 

establishment of a state of tolerance. Although the transplanted kidneys in our trichimeric model 

showed stable engraftment, undetected molecular events might have played roles in the graft 

versus host reaction following DLI. Park et al. [25] found in transcriptional profiles of 

histologically normal living donor kidney allografts an ongoing injury response and 

inflammation at 1 year posttransplant with upregulated genes associated with inflammation, 

immunity or response to injury.  

Despite this evidence of susceptibility to rejection in the transplanted kidney, we 

nonetheless observed limited infiltration of lymphocytes within the native kidneys. Perhaps more 

time might have been required for renal function impairment to occur; however, the observation 

time was cut short by the development of life-threatening severe GvHD in skin, gut and liver. 

Nevertheless, it is clear that we successfully induced an immune response against a kidney tissue 

not normally targeted in GvHD. Further experiments with this model may shed light upon 

immunological mechanisms averting GvHD in many normal tissues, and may ultimately lead to 

methods for specifically targeting these responses against solid tumors. Next-generation 

sequencing studies are currently underway to identify coding nonsynonymous single nucleotide 
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polymorphisms (nsSNP) in breeders and their offspring that are unique to HCT recipients and 

expressed on tissues. Some of these polymorphisms may display ubiquitous tissue expression, 

while others may be restricted to hematopoietic cells or individual organs such as kidneys and, 

therefore, define sets of minor antigens that could be used to sensitize the marrow donor against 

a candidate target organ. Accordingly, subsequent DLI would result in immune reactions 

restricted to the desired target organ, e.g. marrow or kidney, without the development of GvHD. 
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TABLE 1. Chimerism levels and GvHD 

 Percent Chimerism at Time of 
(weeks after transplant) 

 
GVHD after 

Trichimeric 
Recipient 

Kidney 
Transplant 

 
DLI 

 
Euthanasia 

 Kidney   
Trans-
plant 

DLI  

 Grans PBMC Grans PBMC Grans PBMC     
G 362 (25)* (48) (56)     
 Donor 1 33 28 30 28 100 99     
 Donor 2† 66 43 68 56 0 1     
 Recipient  1 29 2 16 0 0  No      S,G,L  
G 513 (40) (56) (59.5)     
 Donor 1 96.9 53 87.4 39 91 86     
 Donor 2† 0.1 19 0.2 34 6 1     
 Recipient  3 28 12.4 27 3 13  No      S,G, L  
G 643 (26) (44) (49)     
 Donor 1 28 5 18 17 95 94     
 Donor 2† 55 45 62 49 4 5     
 Recipient  17 50 20 34 1 1  No      S,G, L  
  
Abbreviations: DLI, donor leukocyte infusion; Grans, granulocytes; PBMC, peripheral blood mononuclear cells. 
*Weeks after hematopoietic cell transplant. 
†Donor 2 donated one kidney to the trichimeric recipient. Donor 1 was apheresed following three injections of 
peripheral blood donated by donor 2. The apheresis product was injected i.v. into the trichimeric recipient dog. 
Percent chimerism of each of the trichimeric dogs was determined prior to kidney transplantation, DLI, and at the 
time of euthanasia. Blood for serum chemistries was collected before and after kidney transplantation and within 1 
week before euthanasia of the trichimeric kidney recipients. GvHD was diagnosed for skin (S), gut (G), and liver (L) 
at necropsy. 
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FIGURE 1.  A) Schema for generating trichimeric marrow recipients and kidney transplant 

rejection. After 2 Gy TBI (1), marrow from two DLA-identical donors was simultaneously 

injected into the recipient (2). Postgrafting immunosuppression with CSP and MMF followed for 

35 and 28 days respectively (3). B) After stable trichimerism was established, a kidney was 

transplanted from donor 2 into the recipient (4). Once stable kidney engraftment was verified, 

donor 1 was sensitized against minor H-antigens of donor 2 with three PBMC injections (5). 

Following DLI from sensitized donor 1 into the trichimeric recipient (6), the dogs were 

monitored for a shift in donor chimerism, GvHD, and kidney graft rejection (7). 

 Donor 2

Kidney Transplantation in 
Trichimeric Dogs

1) 200 cGy 

Donor 1 

Marrow Recipient

2) HCT

3) CSP x 37 days
MMF x 28 days
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5) 3X PBMC injections

4) Kidney transplant 6) DLI

  
7)

100% Donor 
Chimerism, 
GvHD, 
Kidney 
Rejection 

A

B
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FIGURE 2. Kidney histology of dogs G513, G362, and G643 before sensitized DLI, and at 

necropsy. Biopsies of kidney allografts were done using a percutaneous biopsy needle within 1 

week before DLI (left column); sections of both allografted (middle column) and native kidneys 

(right column) were collected at necropsy. Tissues were fixed in 10% buffered formalin, fixed, 

and stained with hematoxylin-eosin and photographed at 100x magnification. 
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FIGURE 3. Granulocyte and peripheral blood mononuclear cell chimerism in dog G643 before 

and after sensitized DLI from donor 1. Stable long-term granulocyte and mononuclear cell 

trichimerism in the HCT recipient (diamonds), donor 1 (boxes) and donor 2 (triangles) was 

interrupted following an infusion of sensitized lymphocytes from Donor 1at week 44. Data 

points were obtained by VNTR-PCR analysis. 
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FIGURE 4. Histology of skin, liver and gut of dogs G513, G362, and G643 at necropsy. Tissues 

were fixed in 10% buffered formalin, sectioned, and stained with hematoxylin-eosin and 

photographed at 250x magnification. Mononuclear cell infiltrates (arrows) and apoptotic 

epithelial cells or damaged obliterated duct structures (circles) are indicated. 

 


