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Summary 

 

The eukaryotic DNA replication machinery must traverse every 

nucleosome in the genome during S phase.  As nucleosomes are 

generally inhibitory to DNA-dependent processes, chromatin structure 

must undergo extensive reorganization to facilitate DNA synthesis.  

However, the identity of chromatin-remodeling factors involved in 

replication and how they affect DNA synthesis is largely unknown.  Here 

we show that two highly conserved ATP-dependent chromatin-remodeling 

complexes in Saccharomyces cerevisiae, Isw2 and Ino80, function in 

parallel to promote replication fork progression.  As a result, Isw2 and 

Ino80 play especially important roles for replication of late-replicating 

regions during periods of replication stress.  Both Isw2 and Ino80 

complexes are enriched at sites of replication, suggesting that these 

complexes act directly to promote fork progression.  These findings 

identify ATP-dependent chromatin-remodeling complexes promoting DNA 

replication, and define a specific stage of replication that requires 

remodeling for normal function. 

 

 The compaction of DNA into chromatin is essential for organization and 

transmission of the eukaryotic genome.  The fundamental repeating unit of 

chromatin is the nucleosome, a structure composed of 147 base pairs of DNA 

wrapped around an octamer of histone proteins.  Since a majority of DNA in the 

eukaryotic genome is occupied in nucleosomes, every process requiring a DNA 
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template is strongly influenced by the positioning and structural integrity of 

nucleosomes.  Therefore, mechanisms controlling chromatin structure can 

positively or negatively affect such nuclear processes. 

 ATP-dependent chromatin-remodeling complexes regulate many DNA-

dependent processes by disrupting histone-DNA contacts.  The enzymatic 

activity of these complexes results in the repositioning of nucleosomes along 

DNA, increased availability of DNA on the nucleosome surface, and/or 

exchange of histone proteins within the nucleosome1,2.  Although their ability to 

regulate transcription is best characterized1,3,  the involvement of ATP-

dependent chromatin-remodeling factors in DNA replication4, repair5, and 

recombination6,7 has recently been revealed.  

 Eukaryotes encode a variety of ATP-dependent chromatin-remodeling 

factors with unique subunit compositions, suggesting individualized functions.  

These complexes are classified into families based on the amino acid sequence 

of the ATPase subunit of the complex8,9.  The presence of multiple types of 

remodeling factors within an organism emphasizes the importance and diversity 

of chromatin regulation mechanisms, but potentially complicates identification of 

the biological functions of these chromatin regulators.  For example, the 

budding yeast S. cerevisiae encodes members of 13 major subfamilies of 

remodeling enzymes9, but mutations in most of these enzymes cause relatively 

mild phenotypes.  One explanation for this phenomenon is that other chromatin 

regulators can account for the loss of an individual ATP-dependent chromatin-

remodeling factor by performing similar or compensating functions.  

In order to uncover previously unknown functions of an ATP-dependent 

chromatin-remodeling factor, we conducted a genetic screen designed to 
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identify genes required for normal growth in the absence of the S.cerevisiae 

Isw2 complex.  The Isw2 ATP-dependent chromatin-remodeling complex is well 

characterized with respect to its mechanism of action in vivo10,11,  and thus 

provides a powerful model for defining the biological roles of chromatin 

remodeling.  Our genetic analyses revealed that subunits of the Ino80 ATP-

dependent chromatin-remodeling complex are required for normal growth in the 

absence of Isw2.  Since Isw2 remodels chromatin by sliding nucleosomes along 

DNA in cis10, and Ino80 has been proposed to facilitate histone exchange12, the 

above result suggests that two chromatin remodeling complexes with distinct 

biochemical activities have compensatory functions.  To identify these functions, 

we investigated the roles of Isw2 and Ino80 complexes in DNA replication by 

whole-genome replication profiling, and found that these complexes promote 

DNA replication specifically in the late-replicating regions.  Furthermore, we 

found that mutations of both chromatin-remodeling complexes decrease the 

rate of replication-fork progression, especially during periods of replication 

stress.  These results identify Isw2 and Ino80 chromatin-remodeling complexes 

as factors able to promote DNA replication, and identified replication fork 

progression as a step in DNA synthesis facilitated by these chromatin 

regulators. 

Results 

S phase is extended in MMS-treated isw2 nhp10 

 To identify the genetic backgrounds in which ISW2 is required for normal 

cell growth, we performed systematic synthetic genetic-interaction screens13.  

We found that deletions of NHP10, IES2, IES3, and IES5, which encode 

subunits of Ino80 chromatin remodeling complex, cause a growth defect in 
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strains bearing an isw2 mutation.  Although the growth conditions used in the 

genetic screens revealed synthetic growth defects, the growth defect of each 

double mutant under optimal conditions (YPD media, 30 °C) is mild, resulting in 

a 33% increase in doubling time over that of wild type (data not shown). The 

ies2, ies3, ies5, and nhp10 deletion mutations likely compromise a subset of 

Ino80 complex function as the ino80 deletion mutation, a likely null mutation for 

Ino80 complex function, has a severe growth defect12,14.  For simplicity, we will 

refer to the isw2 nhp10 double mutant as a representative of this genetic 

interaction as it behaved identically to isw2 ies2, isw2 ies3, and isw2 ies5 

double mutants in growth rate assays.   

We tested the response of isw2 nhp10 double mutants to various environmental 

stresses to gain insight into the biological functions of the Isw2 and Ino80 

complexes.  Of the stress conditions tested, exposure to the DNA alkylating 

agent methyl methanesulfonate (MMS) caused the most striking growth defect 

(Fig. 1a).  Importantly, the sensitivity to MMS is unique to the double mutant; 

both single mutants show the same MMS sensitivity as wild type (Fig. 1a, 

Supplementary Fig. 1a), showing that ISW2 and NHP10 function in a parallel 

and partially compensatory pathway that plays an important role(s) in the 

cellular response to MMS.  We believe that the genetic interactions between 

ISW2 and NHP10 represent parallel functions of Isw2 and Ino80 complexes for 

the following reasons: (1) Mutations in multiple Ino80 complex subunits, the 

ies2, ies3, ies5, and nhp10 deletion mutations, cause identical growth defects in 

combination with an isw2 deletion mutation under all conditions tested (data not 

shown);  (2) the Nhp10 protein is present exclusively in the Ino80 complex in 

vivo15; and (3) a deletion of approximately 900 bp from the 5' end of INO80 

gene (ino80∆900), which encodes the ATPase subunit of Ino80 complex and 

partially inactivates Ino80 complex function12, causes a strong synthetic MMS 

sensitivity in combination with an isw2 mutation (Supplementary Fig. 1a).   
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Sensitivity to MMS can be due to defects in DNA repair, DNA damage 

checkpoint pathways, or DNA replication.  Multiple independent lines of 

evidence indicate that the MMS sensitivity an isw2 nhp10 mutant is not a result 

of a deficiency in DNA repair or DNA damage checkpoint pathways 

(Supplementary Fig. 1b-c, Supplementary Table 1, Supplemental Discussion).  

Since the isw2 nhp10 mutant grows very slowly in the presence of MMS without 

showing a detectable increase in cell death (Supplementary Fig. 1b), we tested 

whether the mutant exhibits specific defects in cell cycle progression in the 

presence of MMS.  To this end, we arrested cells in G1, released them into S 

phase in the presence of MMS, and monitored their DNA content by flow 

cytometry (Fig. 1b).  Wild type cells, as well as isw2 and nhp10 single mutants 

all exhibit similar kinetics of replication.  The isw2 nhp10 double mutant displays 

similar S phase kinetics to the above strains until 60 minutes post release, after 

which there is a pronounced delay in S phase progression.  The delay in S 

phase progression is the primary cause of the MMS induced growth defect in 

isw2 nhp10 mutants as arrest and release from the G2/M boundary, in the 

presence of MMS, similarly resulted in an S phase specific delay (data not 

shown).  Together, these results suggest that the MMS-induced growth defect 

of the isw2 nhp10 mutant is due to a delay in S phase progression.  This 

conclusion is consistent with the observation that the isw2 nhp10 mutants are 

sensitive to other inhibitors of DNA replication (Supplementary Fig. 1d). 

Isw2 and Ino80 facilitate replication in late-regions 

 

 A delay in S phase in the isw2 nhp10 mutants can either be due to a 

uniform delay of DNA replication kinetics throughout the genome or due to 
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replication defects at specific loci.  Conventional replication analyses such as 

FACS analysis or immuno-fluorescence staining after BrdU incorporation 

cannot distinguish between these possibilities.  To address this key question, 

we utilized DNA microarrays to directly determine the kinetics of DNA 

replication of MMS-treated cells on a genome-wide scale16 (see Supplementary 

Fig. 2a for the schematic drawing of the procedure).  Briefly, wild type and isw2 

nhp10 strains were arrested in G1, treated with MMS, released into S phase in 

the presence of MMS, and collected at intervals during S phase (Supplementary 

Fig. 2b). Newly synthesized DNA was separated from unreplicated DNA by 

dense isotope transfer in a variation17 of the Meselson/Stahl experiment. 

Unreplicated DNA and newly replicated DNA were then alternatively labelled 

and hybridized to yeast ORF microarrays.  A value for percent replication was 

determined for each spot on the microarray and the normalized data were 

plotted against the chromosomal position to generate a replication profile 18.  

 Replication profiles of wild type cells show initiation of replication (termed 

firing) occurring early in S phase in broad chromosomal domains containing 

early-firing origins of replication (hereafter origins) (Fig. 2a-d; red boxes).  

Remarkably, virtually every peak in the profiles detected early in S phase 

corresponds to known16,19,20 or predicted21,22 origins, showing that our analysis 

accurately reflects the kinetics of DNA replication throughout the genome.  Our 

results are also consistent with previous reports that early-firing origins 

generally fire efficiently in the presence of replication stress 23,24.  Replication of 

the regions that contain only inefficient and/or late-firing origins (late-replicating 

regions: Fig. 2a-c; grey boxes) proceeds slowly compared to early-replicating 

regions.  The difference in replication timing between early and late-replicating 

regions in this analysis is likely enhanced due to MMS-induced activation of the 
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S phase DNA damage checkpoint, which delays the firing of late-firing 

origins18,20,23,24.   

By analyzing the replication profiles of the isw2 nhp10 mutant, we are able 

to identify specific regions where Isw2 and Ino80 complexes are required for 

facilitation of DNA replication (Fig. 2a-c).  During early time points in S phase, 

replication initiation in the double mutant occurs in the same domains as in the 

wild type strain.  This result shows that the initiation of replication from early-

firing origins is not strongly affected in an isw2 nhp10 mutant.  Two-dimensional 

(2-D) gel electrophoresis analysis at early-firing origins further supports this 

conclusion (Supplementary Fig. 3a).  In sharp contrast to early-replicating 

regions, late-replicating regions in an MMS treated isw2 nhp10 mutant exhibit a 

strong defect in replication (Fig. 2a-c, grey boxes).  Indeed, very limited 

amounts of DNA synthesis are detected within late-replicating regions in the first 

150 minutes after release from G1.  These specific replication defects in late-

replicating regions occur throughout the genome in the isw2 nhp10 mutant; 

severe defects in DNA synthesis within late-replicating regions are observed on 

every single chromosome (Supplementary Fig. 2c) except for chromosome III, 

the only chromosome that lacks extended stretches of late-replicating regions 

(Fig. 2d).  Consistent with the fact that the survival of the isw2 nhp10 mutant in 

MMS is equivalent to that of wild type (Supplementary Fig. 1b), DNA synthesis 

in late-replicating regions is eventually completed during a dramatically 

extended period in S phase (Supplementary Fig. 4a).   

There are two prominent trends in the replication profiles.  First, the replication 

defect in isw2 nhp10 mutants worsens as the distance from early-replicating 

regions increases (e.g. Fig. 2a; e.g. 570-700 kb).  Second, the regions where 

DNA replication is most dramatically affected in isw2 nhp10 mutants extensively 

overlap with those most dependent on Clb5 for normal rates of replication, a S-
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phase cyclin required for efficient initiation from late-firing origins (Fig. 2a-c, 

note positions of early and late origins; H. McCune, M.K. Raghuraman, and B. 

Brewer, University of Washington, personal communication).  This result 

confirms our conclusion that Isw2 and Ino80 are required for efficient replication 

of late-replicating regions.  Together, the genome-wide analysis of replication 

kinetics revealed that the requirement for Isw2 and Ino80 complexes in DNA 

replication in the presence of MMS is not uniform, and that these chromatin-

remodelling factors play particularly crucial roles in promoting DNA synthesis in 

the regions distant from efficient origins of replication.  

Isw2 and Ino80 facilitate replication fork progression 

 

 After monitoring the replication dynamics for MMS treated wild type and 

isw2 nhp10 mutants, we analyzed the respective replication profiles for clues as 

to how DNA replication is affected in late-replicating regions.  Replication 

profiles at the interface between early and late-replicating regions suggest 

defects in replication-fork progression in the isw2 nhp10 double mutant (Fig. 

2e).  In these areas, the slope of wild type replication profiles flattens as S 

phase progresses, indicating that fork progression from early into late-

replicating regions contributes significantly to DNA synthesis in these regions.  

In contrast, the slope of replication profiles in the isw2 nhp10 mutant is slow to 

change during the first 150 minutes into S phase, suggesting that fork 

progression is less efficient in this strain.   

 To directly test whether Isw2 and Ino80 complexes facilitate replication 

fork progression during replication stress, we determined the rate of replication 

fork progression in wild type and isw2 nhp10 strains using dense isotope 

transfer experiments.  To this end, we employed strains bearing deletions of two 

inefficient origins on the right arm of chromosome VI, ARS608 and ARS609 
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(Fig. 3a), such that replication in this region proceeds in one direction from the 

efficient, and early-firing, ARS607 origin25 to the right telomere.  We then 

determined the kinetics of replication at 5 loci interspersed over 52 kilobases 

(Fig. 3b, Supplementary Fig. 4b).  Measurements of replication timing (Trep; time 

of half-maximal replication17) during MMS treatment showed that isw2 nhp10 

mutants require more time than wild type to replicate each of the 5 loci between 

ARS607 and the right telomere (Fig. 3c).  We estimate that forks in isw2 nhp10 

mutants progress at approximately 75% the rate of wild type in this region (621 

bp/min and 837 bp/min respectively, see Supplementary Table 2 for raw data).  

Similar decreases in replication fork rates were detected in the isw2 nhp10 

mutants in two independent experiments (data not shown).   

We believe the differences in replication fork rates between wild type and 

isw2 nhp10 mutants are underestimated by this assay, especially given the 

substantial difference in the replication profiles observed in the whole-genome 

analysis (Fig. 2a-c).  One key difference between these two replication analyses 

is that the fork-rate measurement (Fig. 3) only monitors fork progression over a 

small portion of the genome.  The genome-wide replication kinetics clearly 

indicate that the replication defect in isw2 nhp10 mutant is the most severe in 

late-replicating regions at distances greater than 50 kb from early-firing origins 

(Fig. 2).  Because we monitored fork progression of a 50 kb region of 

chromosome VI that does not encompass an extended late-replicating region  

(Fig. 2b), it is highly likely that the difference in the replication fork rate we 

observed in this region is an underestimate of the actual difference in fork rate.  

Nonetheless, it is important to note that our measurement of replication fork 

rates provides the first direct evidence that Isw2 and Ino80 complexes facilitate 

replication fork progression in the presence of replication stress.  



11 

How do Isw2 and Ino80 function to promote DNA replication?  

 

We considered two possible mechanisms by which Isw2 and Ino80 

promote replication; these factors may act (1) indirectly by maintaining a 

transcriptional program required to promote replication, or (2) directly by 

promoting fork progression at the sites of replication.  To address the first 

possibility, we tested whether isw2 nhp10 mutants are deficient in expression of 

genes that contribute to replication in the presence of MMS.  Given that the 

MMS sensitivity is specific to the double mutant (Fig. 1a, Supplementary Fig. 

1a), we sought to identify genes specifically mis-regulated in isw2 nhp10 

mutants.  To this end, we directly compared transcript profiles of isw2 and 

nhp10 single mutants to those of an isw2 nhp10 double mutant (Supplementary 

Fig. 5a-b). In a previous study, our laboratory found that the direct comparison 

of transcript profiles between single and double mutants is more effective for 

determining defects in transcription specific to the double mutant than 

comparing transcript profiles of mutants to those of wild type cells26.  Our 

analysis revealed minor differences in transcription profiles between single and 

double mutants: 93 genes showed more than 1.5-fold reduction in RNA levels in 

the double mutant as compared to each single mutant.  Notably, none of these 

genes has been shown to be involved in replication, DNA repair, or S phase 

checkpoint functions (Fig. 4a, Supplementary Fig. 5c).  Furthermore, none of 

the 93 genes causes MMS sensitivity when deleted27. Based on these results, 

we conclude that it is unlikely that Isw2 and Ino80 facilitate replication fork 

progression through transcriptional induction of genes involved in replication, 

DNA repair, or DNA damage checkpoint.   
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To test the possibility that Isw2 and Ino80 directly facilitate replication, we 

performed chromatin immunoprecipitation (ChIP) to compare the localization of 

Isw2, Nhp10, and Pol1 during S phase.  Pol1 is the catalytic subunit of the DNA 

polymerase α primase complex required for leading and lagging strand 

synthesis28,29, and is thus localized to replication forks.  If Isw2 and Ino80 

chromatin-remodeling complexes function directly to promote DNA synthesis, 

we expect Isw2, Nhp10, and Pol1 to be enriched at the sites of active 

replication.  To facilitate synchronous progression of replication forks, we 

performed the ChIP experiments in the presence of hydroxyurea (HU), which 

slows down replication forks in a more controlled fashion than MMS.  As 

expected, the Pol1 signal peaks early in S phase at an efficient and early-firing 

origin ARS607 (Fig. 4b).  The ChIP signals for Nhp10 and Isw2 show modest, 

but reproducible, increases during S phase at the same locus;  we saw similar 

results at another early-firing origin ARS305 (data not shown).  The degree of 

enrichment of Isw2 and Nhp10 at origins during S phase that we observe is very 

similar to the degree of enrichment of the Ino80 ATPase at origins in a separate 

study under the same condition (Papamichos-Chronakis and Peterson, in 

press).  These results are consistent with the possibility that Isw2 and Ino80 

complexes are enriched at the sites of active replication. 

Isw2 and Ino80 facilitate replication in the absence of MMS 

Our findings that Isw2 and Ino80 facilitate replication fork progression 

during MMS treatment led us to examine their roles during growth in the 

absence of MMS.  We considered the possibility that MMS facilitates the 

detection of a pre-existing replication defect in isw2 nhp10 mutants.  Because 

MMS delays firing of late-firing origins through activation of S phase checkpoint, 

fewer origins fire during later stages in S phase in the presence of MMS.  As a 
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result, each replication fork must travel a longer distance than normal under this 

condition, providing a more sensitive environment to detect defects in 

replication fork progression.  Consistent with our model, we observed modest 

but reproducible decreases in replication fork rate in isw2 nhp10 mutants in the 

absence of MMS at both 30°C and 16°C (Supplementary Fig. 4a-b, 

Supplementary Table 2), but no detectable differences in the efficiency of firing 

from late origins (Supplementary Fig. 3b).  If our model is correct, one can 

predict that the efficiency of late-origin firing dictates whether cells depend on 

Isw2 and Ino80 for efficient S phase progression.   

To test our model, we took two complementary approaches to manipulate 

late-origin activity in isw2 nhp10 mutants.  First, we reduced the efficiency of 

late-origins in the isw2 nhp10 mutant independently of MMS.  Deletion of CLB5, 

a gene encoding an S phase cyclin, results in a decreased frequency of late-

origin firing without affecting early-origin efficiency30.  As shown in Figure 5a, 

the isw2 nhp10 clb5 triple mutant has a severe growth defect compared to 

corresponding double and single mutants in the absence of MMS.  This result 

shows that a clb5 mutation, which suppresses late-firing origins, increases the 

cell’s dependence on Isw2 and Ino80 complexes for normal growth in the 

absence of MMS.  In a complementary approach, we tested whether an 

increase in late-origin activity can relieve the S phase delay in MMS-treated 

isw2 nhp10 mutants.  We found that deletion of MEC1, which abrogates the S 

phase checkpoint and permits efficient firing of late origins during DNA 

damage23,24, results in a shortened S phase in isw2 nhp10 mutants during MMS 

treatment (Fig. 5b).  Importantly, the difference in the S phase progression rate 

in the presence and absence of both Isw2 and Nhp10 is largely diminished in a 

mec1 background (Fig. 5b).  This result indicates that the efficient firing of late-

origins can effectively mask the replication fork progression defect in isw2 
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nhp10 mutants even in the presence of MMS.  These results collectively 

support our model that Isw2 and Ino80 facilitate replication fork progression in 

the absence of MMS, and that treatment of cells with MMS or deletion of CLB5 

reveals the function of these remodelling factors during periods of normal DNA 

replication by suppressing late-firing origins. 

Discussion 

 It has been proposed that the regulators of chromatin structure can 

profoundly affect DNA replication4,31, but how chromatin-mediated regulation of 

replication takes place is unknown.  Although some differences in the activity of 

late-firing origins may also contribute to the overall defect in replication of late-

replicating regions in the presence of MMS (Supplementary Fig. 3a), our 

replication profiling experiments revealed that the Isw2 and Ino80 complexes 

facilitate replication fork progression.  As a consequence, these complexes play 

particularly important roles in the replication of late-replicating regions during 

replication stress, which occurs in the presence of MMS or in a clb5 mutant.  

We propose that defects in replication are evident under such conditions 

because each replication fork has to travel a longer distance than normal, thus 

providing a more sensitive environment to detect replication fork progression 

defects.  This is the first time in which ATP-dependent chromatin-remodeling 

factors are shown to facilitate a specific step in DNA replication.  Based on 

transcriptional analyses in the isw2 nhp10 mutant cells as well as co-enrichment 

of Isw2 and Ino80 complexes with DNA polymerase α during S phase, we 

propose that both complexes function directly at replication forks to facilitate 

fork progression through chromatin templates.  A direct role for Ino80 complex 

in DNA replication was also suggested by recent independent studies 

(Papamichos-Chronakis and Peterson, in press).  These observations lead to a 
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number of interesting questions; how does altering chromatin structure promote 

fork-progression, and how do two complexes, each with distinct subunit 

composition and biochemical activities, function in a partially compensatory 

manner?  Isw2 slides nucleosomes along DNA in vivo10 and Ino80 has been 

proposed to facilitate histone exchange12. It is possible that these complexes 

either remodel chromatin ahead of the replication fork, facilitating fork passage, 

or behind the fork, where re-establishing proper chromatin structure may be 

important for fork-progression32.  How and where these complexes remodel 

chromatin in relation to a replication fork remains to be determined.  Our studies 

have defined a system to begin investigating these fundamentally important 

questions. 

Previous work has implicated the ISWI class of ATP dependent chromatin-

remodeling factors in promoting replication in metazoans33-36. These studies 

generally used cytological methods to show that ISWI-family remodeling factors 

co-localize with regions containing newly replicated DNA throughout S phase in 

both mammalian33,35,36 and Xenopus34 cells.  Depletion of ISWI remodeling 

complexes, ACF or NoRC,  resulted in a delay in replication of heterochromatic 

regions33,36. It remains to be seen whether these ISWI complexes function 

specifically at the replication fork, and which step in replication is affected by 

their activity.  However, together with our results, these studies suggest that 

ATP-dependent chromatin remodeling may have conserved roles in directly 

facilitating replication throughout eukarya.   

 

Methods 
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Yeast Strains. Yeast strains contain a correction of a weak rad5 mutant allele present in 

the W303-1a parental strain37,38 (see Supplementary Table 3). We carried out single-step 

gene disruptions using KanMX, NatMX, and HphMX drug-resistance markers as 

described39,40. Strains with deletions of ARS608 and ARS609 were derived from a cross 

between YJT8025 and YTT3109. YTT1080 and YTT3306 are both ADE+ due to 

pRS402 integration at the ade2-1 locus. 

Yeast Culture. Cells were grown at 30°C unless otherwise noted. Log-phase cells for 

arrest and release experiments were grown to an optical density from 0.25 - 0.30 at 600 

nm (OD600). Arrest in G1 was accomplished by treatment with 5 μg ml-1 α−factor. Cells 

were released from α−factor arrest via filtration on 0.45 μm nitrocellulose membranes, 

washed, then suspended in pre-warmed media without α−factor. For experiments 

involving MMS treatment of cells in liquid culture, MMS (Sigma) was added to 0.02% 

(v/v) when cells were cultured in YPD, or 0.015% (v/v) when synthetic media was 

required. Cells grown on agar plates were incubated at 30°C for 2 days before imaging. 

Plates containing drugs were used within 24 hours of preparation.  

Flow cytometry. Cells were collected and fixed overnight at 4°C in a final 

concentration of 66.7% (v/v) ethanol (0.5 ml culture : 1 ml ethanol). Samples were 

washed in water, resuspended in 2 mg ml-1 RNaseA in 50mM Tris-HCl pH 8.0, and 

incubated at 37°C for 4 hours. Cells were then centrifuged, resuspended in 2 mg ml–1 

Proteinase K in 50mM Tris-HCl pH 7.5, and incubated at 50°C for 45 minutes. After 

resuspension in 50mM Tris-HCl pH 7.5 and brief sonication at low power, SYTOX 

Green nucleic acid stain (Invitrogen) was added. DNA content analysis was performed 

using a BD FACScan flow cytometer and Cell Quest software (BD Biosciences). 

Dense isotope transfer. Density transfer experiments were performed essentially as 

described17 (http://fangman-brewer.genetics.washington.edu/density_transfer.html). 

Cells were grown a minimum of 7 generations in minimal medium containing 13C and 

http://fangman-brewer.genetics.washington.edu/density_transfer.html
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15N as the sole carbon and nitrogen sources (dense media). Cells were synchronized 

with α−factor for 105 minutes. Cells were then filtered and transferred to complete 

media containing 12C and 14N (light media) in the continued presence of α−factor for 75 

minutes prior to release. This “conditioning” phase promoted a more synchronous 

release into S phase. For drug treatment, MMS was added to 0.015% (v/v) 15 minutes 

into the conditioning phase resulting in a 60-minute exposure during G1 arrest. After the 

conditioning phase, cells were filtered, washed, and released in light media in the 

presence or absence of 0.015% MMS (v/v). Samples were collected at the indicated 

times and genomic DNA was isolated. Genomic DNA was digested with EcoRV (New 

England BioLabs) for microarray experiments, or with a combination of ClaI and SalI 

(NEB) for fork-progression analysis. DNA comprised of two heavy strands (HH) was 

separated from DNA comprised of a heavy and light strand (HL) by ultracentrifugation 

in a cesium chloride gradient.  

Replication profiling with Microarrays. HH and HL fractions were pooled separately 

for each collection, alternatively labeled with Cy3-dUTP and Cy5-dUTP (GE 

Healthcare), and co-hybridized to yeast ORF arrays (GEO accession number GPL1914, 

Fred Hutchinson CRC genomics facility). Image analyses of microarrays were 

performed with Gene Pix Pro v6.0 (Molecular Devices). Data were normalized and 

smoothed as described18. Normalized and smoothed data were averaged for each dye 

swap pair and plotted with KaleidaGraph v 4.0 (Synergy Software). 

Fork progression rate. Percent replication of ClaI / SalI restriction fragments between 

ARS607 and right telomere of chromosome VI was determined by slot-blotting of HH 

and HL fractions as described (http://fangman-

brewer.genetics.washington.edu/density_transfer.html) . Probes to Regions 1-5 are 

identical to probes 2-6 described by Tercero and Diffley25. Kinetic curves of replication 

end either at the last collection time, or at the last time prior to detection of light-light 

http://fangman-brewer.genetics.washington.edu/density_transfer.html
http://fangman-brewer.genetics.washington.edu/density_transfer.html
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(LL) DNA at that region (indicative of a new round of replication in cells that have 

completed S phase and Mitosis since the beginning of the experiment). The maximum 

percentage of budded cells provided a good estimate of the maximum percent 

replication of each restriction fragment and was therefore used to determine the Trep. 

The distance relative to Region 1 was measured from the right most point of each 

probed restriction fragment. An estimate of average fork rate from Region 1 to 5 was 

provided by the inverse of the slope of the best-fit line accounting for all 5 data points25. 

Generation of graphs, determination of Trep values, and curve fitting were done using 

KaleidaGraph. For determination of fork rate at a low temperature, cells were 

synchronized in G1 at 30°C, then released at 16°C. 

Expression analysis. Logarithmically dividing cells were grown to an OD600 of 0.35 in 

YPD media then divided in two. One culture was treated with 0.02% (v/v) MMS. Cells 

were then incubated for two hours then harvested for RNA extraction by acid-phenol 

method. Transcript-microarray analysis of was performed as described41. The “deletion 

causes MMS sensitivity” gene list is as described27. The “replication, repair, and 

checkpoint” gene list was compiled based on descriptions provided at the 

Saccharomyces Genome Database.  The complete transcript array data set  (MIAME 

compliant) is available at http://www.fhcrc.org/science/labs/tsukiyama/. 

Chromatin immunoprecipation (ChIP). ChIP was done essentially as described41,42 

with the following modifications.  300 mL of culture was collected at indicated time 

points after release from G1 arrest to 200mM HU and fixed at room temp with 1% 

formaldehyde for 20 min.  Immunoprecipitation performed with 20 µL of protein G 

dynabeads (Dynal) prebound overnight at 4°C with either 1 µL of Flag (Sigma) or 2 µL 

of 9E10 (Covance) antibodies, or 100 µL of M-280 streptavidin dynabeads (Dynal 

Biotech).  A detailed protocol is available at 

http://www.fhcrc.org/science/labs/tsukiyama/.  

http://www.fhcrc.org/science/labs/tsukiyama/
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PCR analysis. 28 cycles of PCR analysis was performed using 0.5 µL of [α-32P] dCTP 

per 100µl reaction. Serial dilution of input DNA confirmed that PCR was within the 

linear range.  Radioactive PCR was done in duplicate for ChIP samples from three 

independently prepared samples.  PCR products were separated on 6% (w/v) 

polyacrylamide gels, and visualized on a phosphorimager (Molecular Dynamics).  

Primer sequences are listed in Supplementary Table 4.  
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Figure 1. MMS sensitivity of isw2 nhp10 mutants is due to a prolonged S 

phase. (a) isw2 nhp10 double mutants grow slowly in the presence of MMS. 

Wild type (W1588-4c), isw2 (YTT1080), nhp10 (YTT2060), isw2 nhp10 

(YTT2109) strains were grown to saturation then 10-fold serial dilutions were 
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plated onto YPD plates with or without 0.02% MMS. (b) S phase is prolonged in 

MMS-treated isw2 nhp10 mutants. The above strains were arrested in G1 and 

then released into S phase in the presence of 0.02% MMS as diagrammed. 

Cells were collected at the indicated times after release and DNA content was 

determined by flow cytometry (black lines). Gray profiles are from asynchronous 

cells collected prior to G1 arrest.  

 

Figure 2. Isw2 and Ino80 complexes are required for efficient replication of late-

replicating regions in the presence of MMS.  (a-d) Replication profiles of 

chromosomes IV (a), VI (b), XV (c) and III (d) from WT (YTT1831) and isw2 

nhp10 (YTT3306) strains undergoing S phase in the presence of MMS.  (e) 

Close view of the replication profile at the interface between early and late-

replicating regions on chromosome IV at chromosomal coordinates 550-700 kb 

(dotted box in a).  Profiles were generated from cells collected at 30 (black), 45 

(light blue), 60 (green), 90 (orange), 120 (dark blue), and 150 (grey) minutes 

after release from G1 arrest. Collection of isw2 nhp10 samples was initiated at 

45 minutes due to a less efficient release from α-factor arrest characteristic of 

this strain (See Supplementary Fig. 2b, 4b). Positions of confirmed and likely 

ARSs43 are indicated at the bottom of each graph. Triangles correspond to 

positions of origins that are replicated early in a normal S phase (filled triangles 

represent origins that are amongst the first 25% replicated in two studies of 

replication timing16,19; open triangles represent origins that are amongst the 

earliest 25% in only one of the two studies). The filled circles correspond to 

remaining origins. Origins that are fired in a wild type strain during DNA damage 

checkpoint activation by 200mM Hydroxyurea20 (early firing origins) are 

indicated in red.  The black circle on the x-axis indicates position of the 
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centromere.  The red and grey boxes represent approximations of early and 

late-replicating regions respectively.  

 

Figure 3. Replication-fork progression is slowed in isw2 nhp10 mutants.  (a) 

Diagram of the right arm of chromosome VI in the strains used for replication-

fork progression measurements.  The locations of the five regions (Regions 1-5) 

monitored for replication are shown in shades of blue.  ARS608 and ARS609 

(white boxes) are deleted to promote unidirectional replication from ARS607 to 

the telomere25.  (b) Replication kinetics along chromosome VI.  Percent 

replication of Regions 1-5 (colors correspond to diagram in a) was determined 

throughout S phase in the presence of MMS.  The dashed line corresponds to 

the percentage of budded cells.  The horizontal dotted line corresponds to the 

percent replication value one-half of the maximum obtained for that experiment.  

The Trep for that region is indicated on the x-axis by the arrowhead of the same 

color. Wild type (YTT3528) and isw2 nhp10 (YTT3531) strains were treated as 

in Supplementary Figure 2a.  The kinetic curves of replication in the double 

mutant are more flat than those of wild type cells because the mutant is 

released from G1 arrest in a less synchronous fashion (see the budding index 

and Supplementary Fig. 4b).  Importantly, the difference in the release kinetics 

only affects the slope of kinetic curve at each time point, not the distance 

between each line that reflects replication fork rate.  (c) Replication times 

relative to Region 1. The values for Trep determined in (b) were plotted relative 

to the value for Region 1 and are indicated by arrows (colors correspond to 

diagram in a).  The white arrows indicate the time of half-maximal budding in 

the population (Tbud). 
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Figure 4. Isw2 and Ino80 may directly facilitate DNA replication.  (a) Venn 

diagram showing the lack of overlap of genes deactivated 1.5 fold in isw2 nhp10 

(gray) with genes involved in replication, repair, checkpoint (yellow), and MMS 

resistance (blue). The 93 genes represented are a collection of genes that are 

deactivated in isw2 nhp10 mutants in comparison to isw2 and nhp10 single 

mutants under normal or MMS growth conditions. The Venn diagram 

encompasses data from 6144 genes.  (b) Chromatin immunoprecipitation 

(ChIP) of Pol1, Nhp10, and Isw2 during S phase.  YTT3735 and YTT3736 cells 

(Pol1-3Flag, Nhp10-13Myc, Isw2-Avi) were arrested in G1 and released into S 

phase in the presence of 200 mM HU.  Cells were harvested at indicated time 

points in S phase and utilized for ChIP analysis.  DNA from immunoprecipitated 

fractions was analyzed by radioactive PCR with primers corresponding to an 

early origin (ARS607) and a late origin (ARS1502).  ARS1502 does not initiate 

replication under this experimental condition.  The mean and standard deviation 

of the signals at ARS607 relative to ARS1502 from three biological replicates 

are presented.   

Figure 5. Isw2 and Ino80 promote replication in the absence of MMS.  (a) A 

clb5 deletion causes a severe growth defect in the absence of Isw2 and Nhp10. 

Wild type (W1588-4c), isw2 (YTT1080), nhp10 (YTT2060), isw2 nhp10 

(YTT2109), clb5 (YTT3402), isw2 clb5 (YTT3434) nhp10 clb5 (YTT3437), and 

isw2 nhp10 clb5(YTT3441) were grown on YPD media at 30°C for 2 days.  (b) 

A mec1 deletion suppresses the extended S phase of isw2 nhp10 mutants in 

the presence of 0.02% MMS. mec1 (YTT3003) and mec1 isw2 nhp10 

(YTT3048) mutants were treated and their DNA content determined as in Figure 

1b. WT and isw2 nhp10 FACS profiles are reproduced from Fig.1b for 

comparison. Both strains contain an sml1 deletion to suppress lethality of a 

mec1 deletion38. 



23 

References 

 
 
1. Becker, P.B. & Horz, W. ATP-dependent nucleosome remodeling. Annu Rev 

Biochem 71, 247-73 (2002). 
2. Smith, C.L. & Peterson, C.L. ATP-dependent chromatin remodeling. Curr Top 

Dev Biol 65, 115-48 (2005). 
3. Narlikar, G.J., Fan, H.Y. & Kingston, R.E. Cooperation between complexes that 

regulate chromatin structure and transcription. Cell 108, 475-87 (2002). 
4. Varga-Weisz, P. Chromatin remodeling factors and DNA replication. Prog Mol 

Subcell Biol 38, 1-30 (2005). 
5. Ataian, Y. & Krebs, J.E. Five repair pathways in one context: chromatin 

modification during DNA repair. Biochem Cell Biol 84, 490-504 (2006). 
6. Jaskelioff, M., Van Komen, S., Krebs, J.E., Sung, P. & Peterson, C.L. Rad54p is 

a chromatin remodeling enzyme required for heteroduplex DNA joint formation 
with chromatin. J Biol Chem 278, 9212-8 (2003). 

7. van Attikum, H. & Gasser, S.M. ATP-dependent chromatin remodeling and 
DNA double-strand break repair. Cell Cycle 4, 1011-4 (2005). 

8. Eisen, J.A., Sweder, K.S. & Hanawalt, P.C. Evolution of the SNF2 family of 
proteins: subfamilies with distinct sequences and functions. Nucl. Acids Res. 23, 
2715-2723 (1995). 

9. Flaus, A., Martin, D.M., Barton, G.J. & Owen-Hughes, T. Identification of 
multiple distinct Snf2 subfamilies with conserved structural motifs. Nucleic 
Acids Res 34, 2887-905 (2006). 

10. Fazzio, T.G. & Tsukiyama, T. Chromatin Remodeling In Vivo: Evidence for a 
Nucleosome Sliding Mechanism. Molecular Cell 12, 1333-1340 (2003). 

11. Whitehouse, I. & Tsukiyama, T. Antagonistic forces that position nucleosomes 
in vivo. Nat Struct Mol Biol 13, 633-40 (2006). 

12. Papamichos-Chronakis, M., Krebs, J.E. & Peterson, C.L. Interplay between 
Ino80 and Swr1 chromatin remodeling enzymes regulates cell cycle checkpoint 
adaptation in response to DNA damage. Genes Dev 20, 2437-49 (2006). 

13. Tong, A.H. et al. Systematic genetic analysis with ordered arrays of yeast 
deletion mutants. Science 294, 2364-8 (2001). 

14. Shen, X., Mizuguchi, G., Hamiche, A. & Wu, C. A chromatin remodelling 
complex involved in transcription and DNA processing. Nature 406, 541-4 
(2000). 

15. Morrison, A.J. et al. INO80 and gamma-H2AX interaction links ATP-dependent 
chromatin remodeling to DNA damage repair. Cell 119, 767-75 (2004). 

16. Raghuraman, M.K. et al. Replication dynamics of the yeast genome. Science 
294, 115-21 (2001). 

17. McCarroll, R.M. & Fangman, W.L. Time of replication of yeast centromeres 
and telomeres. Cell 54, 505-13 (1988). 

18. Alvino, G.M. et al. Replication in Hydroxyurea: It's a matter of time. Mol Cell 
Biol (2007). 

19. Yabuki, N., Terashima, H. & Kitada, K. Mapping of early firing origins on a 
replication profile of budding yeast. Genes Cells 7, 781-9 (2002). 



24 

20. Feng, W. et al. Genomic mapping of single-stranded DNA in hydroxyurea-
challenged yeasts identifies origins of replication. Nat Cell Biol 8, 148-55 
(2006). 

21. Wyrick, J.J. et al. Genome-wide distribution of ORC and MCM proteins in S. 
cerevisiae: high-resolution mapping of replication origins. Science 294, 2357-60 
(2001). 

22. Nieduszynski, C.A., Knox, Y. & Donaldson, A.D. Genome-wide identification 
of replication origins in yeast by comparative genomics. Genes Dev 20, 1874-9 
(2006). 

23. Santocanale, C. & Diffley, J.F. A Mec1- and Rad53-dependent checkpoint 
controls late-firing origins of DNA replication. Nature 395, 615-8 (1998). 

24. Shirahige, K. et al. Regulation of DNA-replication origins during cell-cycle 
progression. Nature 395, 618-21 (1998). 

25. Tercero, J.A. & Diffley, J.F. Regulation of DNA replication fork progression 
through damaged DNA by the Mec1/Rad53 checkpoint. Nature 412, 553-7 
(2001). 

26. Fazzio, T.G. et al. Widespread collaboration of Isw2 and Sin3-Rpd3 chromatin 
remodeling complexes in transcriptional repression. Mol Cell Biol 21, 6450-60 
(2001). 

27. Chang, M., Bellaoui, M., Boone, C. & Brown, G.W. A genome-wide screen for 
methyl methanesulfonate-sensitive mutants reveals genes required for S phase 
progression in the presence of DNA damage. Proc Natl Acad Sci U S A 99, 
16934-9 (2002). 

28. Sugino, A. Yeast DNA polymerases and their role at the replication fork. Trends 
Biochem Sci 20, 319-23 (1995). 

29. Burgers, P.M. Eukaryotic DNA polymerases in DNA replication and DNA 
repair. Chromosoma 107, 218-27 (1998). 

30. Donaldson, A.D. et al. CLB5-dependent activation of late replication origins in 
S. cerevisiae. Mol Cell 2, 173-82 (1998). 

31. Falbo, K.B. & Shen, X. Chromatin remodeling in DNA replication. J Cell 
Biochem 97, 684-9 (2006). 

32. Ye, X. et al. Defective S phase chromatin assembly causes DNA damage, 
activation of the S phase checkpoint, and S phase arrest. Mol Cell 11, 341-51 
(2003). 

33. Collins, N. et al. An ACF1-ISWI chromatin-remodeling complex is required for 
DNA replication through heterochromatin. Nat Genet 32, 627-32 (2002). 

34. Bozhenok, L., Wade, P.A. & Varga-Weisz, P. WSTF-ISWI chromatin 
remodeling complex targets heterochromatic replication foci. Embo J 21, 2231-
41 (2002). 

35. Poot, R.A. et al. The Williams syndrome transcription factor interacts with 
PCNA to target chromatin remodelling by ISWI to replication foci. Nat Cell Biol 
6, 1236-44 (2004). 

36. Li, J., Santoro, R., Koberna, K. & Grummt, I. The chromatin remodeling 
complex NoRC controls replication timing of rRNA genes. Embo J 24, 120-7 
(2005). 

37. Thomas, B.J. & Rothstein, R. The genetic control of direct-repeat recombination 
in Saccharomyces: the effect of rad52 and rad1 on mitotic recombination at 
GAL10, a transcriptionally regulated gene. Genetics 123, 725-38 (1989). 



25 

38. Zhao, X., Muller, E.G. & Rothstein, R. A suppressor of two essential checkpoint 
genes identifies a novel protein that negatively affects dNTP pools. Mol Cell 2, 
329-40 (1998). 

39. Guldener, U., Heck, S., Fielder, T., Beinhauer, J. & Hegemann, J.H. A new 
efficient gene disruption cassette for repeated use in budding yeast. Nucleic 
Acids Res 24, 2519-24 (1996). 

40. Goldstein, A.L. & McCusker, J.H. Three new dominant drug resistance cassettes 
for gene disruption in Saccharomyces cerevisiae. Yeast 15, 1541-53 (1999). 

41. Lindstrom, K.C., Vary, J.C., Jr., Parthun, M.R., Delrow, J. & Tsukiyama, T. 
Isw1 functions in parallel with the NuA4 and Swr1 complexes in stress-induced 
gene repression. Mol Cell Biol 26, 6117-29 (2006). 

42. Gelbart, M.E., Bachman, N., Delrow, J., Boeke, J.D. & Tsukiyama, T. Genome-
wide identification of Isw2 chromatin-remodeling targets by localization of a 
catalytically inactive mutant. Genes Dev 19, 942-54 (2005). 

43. Nieduszynski, C.A., Hiraga, S., Ak, P., Benham, C.J. & Donaldson, A.D. 
OriDB: a DNA replication origin database. Nucleic Acids Res 35, D40-6 (2007). 

 
 



a

b 

0

30

45

60

75

90

120

150

180

210

240

WT

isw2

nhp10

isw2 nhp10

YPD + 0.02% MMSYPD

α factor 
100 minLog phase

WT isw2 nhp10 isw2 nhp10
Time
(min)

Release to
0.02% MMS

Figure 1



WT

WT

isw2 nhp10

%
 re

pl
ic

at
io

n

0

20

40

60

80

100

0 100 200

0

20

40

60

80

100

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

0

20

40

60

80

100

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

0

20

40

60

80

100

0 100 200

0

20

40

60

80

100

0 100 200 300 400 500 600 700 800 900 1000

0

20

40

60

80

100

0 100 200 300 400 500 600 700 800 900 1000

0

20

40

60

80

100

0 100 200 300

0

20

40

60

80

100

0 100 200 300

WT

isw2 nhp10

Chromosomal coordinate (kb)

isw2 nhp10

Chromosome IV

Chromosome XVChromosome VI

Chromosome III

%
 re

pl
ic

at
io

n

%
 re

pl
ic

at
io

n

Chromosomal coordinate (kb)Chromosomal coordinate (kb)

Chromosomal coordinate (kb)

%
 re

pl
ic

at
io

n

Chromosomal coordinate (kb)

Figure 2
a

b

%
 re

pl
ic

at
io

n

c

d e Chromosome IV (550 to 700 kb)
WT

isw2 nhp10

WT isw2 nhp10

0

20

40

60

80

100

600 700
0

20

40

60

80

100

600 700



%
 re

pl
ic

at
io

n 
 (%

 b
ud

   
   

   
)

1/2 Max

1/2 Max

ARS607
TEL

1 2 3 4 5

0 8.0 27.1 40.6 51.9Distance (kb):

a

b

Figure 3
Replication

∆ARS608 ∆ARS609

Region:

WT

isw2
nhp10

Time
(min)

0 10 20 30 40 50 60 70 80 90

Tbud

c

3 4 5Tbud21

3 4 51 2

Time (min)

0

20

40

60

80

100

0 50 100 150 200 250

0

20

40

60

80

100

0 50 100 150 200 250 300 350 400

isw2 nhp10

WT



Figure 4
a

b

Deletion causes MMS
sensitivity

93

167

64

39

Replication, repair,
and checkpoint

Expression down 1.5
fold in isw2 nhp10

6,144 total genes
examined

Fo
ld

 e
nr

ic
hm

en
t o

ve
r A

R
S

15
02

ARS607 (early origin)

0 min

30 min

60 min

Pol1 Nhp10 Isw2



clb5

WT
isw2
nhp10
clb5

isw2
nhp10

clb5
nhp10

nhp10clb5
isw2

isw2

Figure 5

a

0

30

45

60

75

90

Time
(min)

mec1 mec1 isw2
nhp10

b

YPD (no MMS)

WT isw2 nhp10


	Isw2 and Ino80 facilitate replication in late-regions
	Isw2 and Ino80 facilitate replication fork progression
	How do Isw2 and Ino80 function to promote DNA replication? 

