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Abstract: 
 
FAS is a cell surface receptor involved in apoptotic signal transmission.  Deregulation of 

this pathway results in down regulation of apoptosis and subsequent persistence of a 

malignant clone.  A single nucleotide polymorphism resulting in guanine-to-adenine 

(G→A) transition in the FAS promoter region (position –1377) is thought to reduce 

stimulatory protein 1 (SP1) transcription factor binding and decrease FAS expression.  

Previous work has shown increased risk of developing acute myeloid leukemia (AML) in 

adult patients with a variant allele at this site.  We hypothesized that FAS genotype would 

also increase risk of childhood AML and, by altering susceptibility to apoptosis might 

also impact outcome of AML therapy.  440 children treated for de novo AML on a 

uniform protocol were genotyped for FAS 1377.  Similar to adult AML data, genotype 

frequencies in our study were significantly different between white patients and white 

controls, suggesting that the variant allele at this site increases susceptibility to 

developing childhood AML. There were no significant differences in overall survival 

(OS), event-free survival (EFS), treatment-related mortality (TRM), or relapse rate 

between patients with FAS 1377GG genotype vs. 1377GA/1377AA genotypes.  There 

was a trend towards improved OS and EFS in children homozygous for the variant 

genotype (AA cases) but small numbers (n=12 AA) make interpretation of this 

observation difficult.  

 
 



Introduction 

 

Human FAS (TNFRSF6/CD95/APO-1) protein is a cell surface receptor, belonging to the 

family of tumor necrosis factor receptors, and is involved in apoptotic signal transmission 

(Sameshima 1991, Oehm 1992).  It is a 48-kDa Type I membrane glycoprotein composed 

of 3 domains; an extracellular domain comprising of 3 cysteine-rich motif subdomains 

characteristic of the superfamily, a transmembrane domain, and a highly conserved 

intracellular domain known as a death domain (Itoh 1993).  Binding to the receptor by the 

FAS ligand (CD95L) triggers receptor trimerization and subsequent assembly of the 

death-inducing signaling complex (Muschen 2000, Yonehara, 1989).  Germline 

mutations or deletions within FAS, resulting in a loss or a reduction in receptor function, 

have been shown to cause autoimmune lymphoproliferative syndrome as well as an 

overall increased risk of hematological malignancies (Rieux et al 1995).  Dysregulation 

of this pathway is believed to result in down regulation of apoptosis, allowing subsequent 

persistence of a malignant clone. 

 

 FAS expression levels may also be affected by mutations or polymorphisms in the 

promoter region of FAS, particularly when they affect the transcription binding sites.  A 

single nucleotide polymorphism resulting in guanine-to-adenine (G→A) transition in the 

FAS promoter region occurs at position -1377, affecting a SP1 transcription factor 

binding site.  An adenine residue at this position significantly reduces SP1 binding 

compared to guanine residue, causing a decrease in FAS expression.  Functional germline 

and somatic mutations in the FAS gene and perhaps also in the FASL gene that lead to 



decreased expression of FAS and/or increased expression of FAS Ligand (FASL) favors 

malignant transformation and progression (Muschen M 2000) by impairing apoptotic 

signal transduction and are associated with an increased risk of cancer (Davidson WF, 

1998; Peter AM 1999; Lee SH 1999; Takahashi T 1994).  A recent case-control study in 

adults indicated increased risk of developing AML in patients with variant allele (A) at 

this site (Sibley et al 2003).  In addition, reduced expression of Fas-associated protein 

with death domain (FADD), the main adaptor for transmission of FAS signaling, is 

associated with decreased response to chemotherapy in AML cells (Tourneur et al, 2004). 

We hypothesized that FAS -1377 polymorphism would increase risk of childhood AML 

and, by altering susceptibility to apoptosis might impact outcome of AML therapy. 

 

Patients and Methods 

 

Patients 

The study population included 440 children with de novo AML treated on Children’s 
 
Cancer Group (CCG) therapeutic studies CCG-2941(n=36) and CCG-2961(n=404) 
 
between 1995 and 2002. Clinical data, including age, sex, white blood cell (WBC) count 

at diagnosis, race, presence of chloroma, presence of CNS disease, and 

immunophenotype were collected prospectively (Table 1).  Cases were classified on the 

basis of criteria established and revised by the French-American-British (FAB) 

Cooperative Study Group by central pathology review.  All FAB categories except acute 

promyelocytic leukemia (APL – AML M3) were eligible for enrollment and were treated 

with the same chemotherapy regimens.   

 



Six hundred and forty two normal blood donors of known age and race (359 white and 

147 black) were randomly selected and used to determine control genotype frequencies.  

 

Chemotherapy Treatment Regimen 

CCG-2961 study was a randomized phase III trial of intensively timed induction, 

consolidation, and intensification therapy for pediatric patients with previously untreated 

AML or MDS (Lange 2005).  The study was conducted between August 1996 and 

December 2002.  CCG 2941 was a feasibility pilot of the same chemotherapy regimen 

that preceded the randomized study.  Induction included 5 drugs: idarubicin, etoposide, 

dexamethasone, cytarabine, and 6-thioguanine (IDA DCTER) given on days 0-3 followed 

by 5 drugs (daunorubicin, etoposide, dexamethasone, Ara-C and 6-thioguanine) 

(DCTER) given on days 10-13 (Lange 2004).  Upon recovery of white blood cell and 

platelet counts, patients were randomly assigned to consolidation therapy consisting of 

the same sequence of drugs or to fludarabine/ cytarabine /idarubicin.  Intrathecal 

cytarabine was used for CNS prophylaxis.  Patients with matched-related donors were 

assigned to allogeneic marrow transplant intensification.  Pre-transplant cytoreduction 

was busulfan and cyclophosphamide.  Patients without a related donor received high-dose 

cytarabine/L-asparaginase (Capizzi II), and additional intrathecal cytarabine.  After 

recovery from chemotherapy, patients were randomized again to either receive 

Interleukin-2 or standard follow-up care.  Transplanted patients were not eligible for 

randomization to interleukin-2. 

 

FAS genotyping 



 

DNA extracted from diagnostic marrow samples using standard methods was normalized 

to 10 ng/μl.  Primers were synthesized based on the sequence of the Apo-1/FAS gene 

reported in Gene Bank (X87625, Table 2).  

 

For each sample testing, two PCR reactions in different wells were performed; one 

reaction detected the wild-type allele and the other detected the mutant allele using 

mismatch amplification assay coupled with real time PCR (MAMA assay).  This assay is 

based on the concept that two mismatched nucleotides instead of a single mismatch at the 

3’ end of the primer effectively abrogates PCR amplification efficiency. 

 

For each reaction, a 20 ng DNA template was added to the reaction mixture, containing a 

final concentration of 0.2 µM of each primer - specific forward primer (F1 or F2) and the 

common reverse primer and sybergreen mastermix (Applied biosystems, CA, USA).  RT-

PCR was performed using an ABI 7700 Thermocycler for 40 cycles, with annealing 

temperature of 62°C and a total of 50 µl reaction volume.  

 

DNA from normal controls was extracted using standard techniques and genotyped as 

described for cases.  Genotyping results were duplicated in 10% of samples; concordance 

between repeats was 100%.  Furthermore, 10% of the samples were also genotyped using 

direct sequencing; concordance with  MAMA genotyping was 100%. 

 

Statistical Analysis  



 

Data were analyzed from CCG-2941 and CCG-2961 through April 2005 and October 

2006, respectively. The significance of observed differences in proportions was tested 

using the Chi-squared test and Fisher’s exact test when data were sparse.  The Mann-

Whitney test was used to determine the significance between differences in medians 

(Mann 1947).  The Kaplan-Meier method was used to calculate estimates of overall 

survival (OS), event-free survival (EFS) and disease-free survival (DFS) (Kaplan 1958).  

Estimates are reported with their Greenwood standard errors (Greenwood 1926).  

Differences in these estimates were tested for significance using the log-rank statistic 

(Peto 1972).  OS is defined as time from study entry to death from any cause. EFS is 

defined as time from study entry to failure at the end of two courses, relapse or death 

from any cause.  DFS is defined as time from the end of one course of therapy to failure 

at the end of two courses, relapse or death from any cause.  Cumulative incidence 

estimates were used to determine relapse rate (RR) and treatment-related mortality 

(TRM).  RR is defined as time from the end of one course of therapy to failure at the end 

of two courses, relapse or death from progressive disease where deaths from non-

progressive disease were competing events.  TRM is defined as time from study entry to 

death from non-progressive disease where failures at the end of two courses, relapses and 

deaths from progressive disease were competing events. Differences between RR or 

TRM estimates were tested for significance using Gray’s test (Gray 1988).  Children lost 

to follow-up were censored at their date of last known contact or at a cutoff 6 months 

prior to April 2005 (CCG-2941) or October 2006 (CCG-2961).  Cox regression was used 

for multivariate models that looked at differences between groups adjusting for study 



assignment, age, gender, race, and WBC count. Reported p-values represent comparisons 

between patients with FAS 1377GG genotype vs. those with FAS 1377GA or 1377AA 

genotypes.  

 

Results 

 

Allele and genotype frequencies for cases and controls for white patients are shown in 

Table 3. The GA and AA genotypes were significantly more frequent in white cases 

compared to controls (80.4% GG, 17.6% GA, 2.0% AA in patients vs. 87.6% GG, 11.3% 

GA and 1.1% AA in controls; p=0.03). Comparison of genotype frequencies in black 

cases and controls did not show a significant difference (86.1% GG, 11.1% GA, 2.8% 

AA in patients vs. 90.5% GG, 8.2% GA and 1.4% AA in controls; p=0.70), although this 

analysis was limited by small numbers of black cases (n=36).  The distributions of FAS 

genotypes in cases and controls were consistent with the Hardy–Weinberg equilibrium.  

Stratification of cases by median age at diagnosis, median WBC count at diagnosis, AML 

subtype, or cytogenetics revealed no difference in genotype frequencies. 

 

FAS Genotype and Outcome  

 

There was a trend towards improved survival (OS at 5 years 75 ± 25% AA, 57 ± 11% 

GA, 50 ± 6% GG; p=0.16) and EFS (67 ± 27% AA, 44 ± 11% GA, 40 ± 5% GG; p=0.12) 

in AA cases relative to the other genotypes, but small numbers (n=12 AA) may have 

contributed to the results not being statistically significant (Figure 1). Analysis of EFS, 



DFS, treatment related mortality and relapse rate from study entry by genotype also 

showed similar estimates between the three genotypes (Table 4).   

Multivariate analyses that adjusted for study assignment, age, gender, race, and WBC 

also suggested that FAS genotype did not modify OS or EFS. Thus, FAS genotype was 

not significantly associated with either resistant disease or treatment-related toxicity.  

 

Discussion 

 

 In this pediatric study we found that FAS1377 genotype alters susceptibility to de novo 

AML in white children, similar to results reported in adult AML. Sibley et al. (2003) 

showed a significantly increased risk of AML associated with FAS heterozygotes (GA) 

and homozygote variants (AA) at position –1377 bp, in a case-control study of adult 

AML, in agreement with the findings in our study. We did not find any statistically 

significant difference in  genotype frequency between black patients and black controls, 

although similar to white cases, point estimates indicated an increased frequency of GA 

and AA genotypes in cases compared to controls, likely reflecting the small number of 

black cases included in the study.  Also, our study showed a trend towards improved 

survival (OS and EFS) in AA cases, small numbers (n=12 AA) again may have 

contributed to the results not being statistically significant.  This finding will need to be 

replicated in future studies to determine it’s significance. 

 

Our observation that FAS variants contribute to leukemogenesis supports studies by other 

investigators that report increased risk of lymphoproliferative disease and certain 



hematologic malignancies associated with defects in the FAS pathway. Down-regulation 

of apoptosis prolongs the normal cellular life span, allows cells to acquire mutations and 

facilitates tumor progression, for example, BCL2 transgenic mice with targeted 

expression in myeloid cells develop myeloproliferation similar to human chronic 

myelomonocytic leukemia; however, they rarely go on to develop acute leukemia.  

Interestingly, when mice constitutively expressing BCL2 are crossed onto a FAS-/- 

background, approximately 15% develop AML, implicating FAS-mediated apoptosis in 

the pathogenesis of AML (Traver 1998).   

 

In humans, germline mutations or deletions within FAS have been shown to cause 

autoimmune lymphoproliferative syndrome, a condition associated with generalized 

lymphoproliferation and systemic autoimmunity, as well as an overall increased risk of 

hematological malignancies (Rieux-Laucat, 1995).  Also, aberrant apoptosis is known to 

be important in the pathogenesis of AML (Rieux-Laucat, 1995) because up-regulation of 

the antiapoptotic protein BCL2 is a common feature of leukemic blasts and may be a 

critical event in myeloid transformation (Delia, D, 1992).  Myeloblasts are known to 

express high levels of FAS, and functional deficiencies of FAS signaling have been 

shown to be important in several subtypes of AML, providing further evidence for FAS-

mediated apoptosis in the etiology of AML (Komada, 1995).    

 

Further studies are needed to evaluate a potentially important role of FAS genotype in the 

outcome of AML therapy.  Also, mechanistic studies further defining the functionality of 

this FAS polymorphism will help clarify the importance of variants at this site. 
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Table 1. Demographics of patients and distribution of FAS genotypes  

 

              GG vs  GA vs  GG vs 
  GG (N=347) GA (N=81) AA (N=12) GA AA AA 
Characteristic N % N % N % P P P 
                
Age: median & range (yrs) 9.4 (0.01 – 20.9) 11.5 (0.47 - 19.0) 10.1 (1.64 - 16.2) 0.12 0.99 0.50 

WBC: median & range 20600 
(1000 – 
860000) 18400 (300 - 373300) 17700 

(1500 - 
848000) 0.67 0.52 0.38 

                
Study                

CCG-2941 30 9% 6 7% 0 0% 0.89 1.00 0.61 
CCG-2961 317 91% 75 93% 12 100%      

                
Gender                

Male 189 55% 49 61% 6 50% 0.39 0.54 0.99 
Female 158 45% 32 39% 6 50%      

Race                
White  246 71% 54 67% 6 50% 0.52 0.34 0.19 
Black 31 9% 4 5% 1 8% 0.34 0.51 1.00 

Hispanic 49 14% 18 22% 1 8% 0.10 0.45 1.00 
Asian 5 1% 4 5% 4 33% 0.07 0.01 <0.01 
Other 15 4% 1 1% 0 0% 0.33 1.00 1.00 

Unknown 1  0  0        
FAB                

M0 20 6% 5 6% 0 0% 0.80 1.00 1.00 
M1 44 13% 21 26% 1 8% 0.01 0.28 1.00 
M2 101 29% 19 23% 6 50% 0.37 0.08 0.19 
M4 92 27% 20 25% 3 25% 0.83 1.00 1.00 
M5 61 18% 13 16% 2 17% 0.86 1.00 1.00 
M6 8 2% 2 2% 0 0% 1.00 1.00 1.00 
M7 15 4% 1 1% 0 0% 0.33 1.00 1.00 

Other 5 1% 0 0% 0 0% 0.59 1.00 1.00 
Unknown 1  0  0        

Cytogenetics                
Normal 46 22% 13 25% 2 29% 0.77 1.00 0.66 
t(8;21) 35 17% 9 18% 0 0% 0.92 0.58 0.60 

Abn 16 19 9% 4 8% 3 43% 1.00 0.03 0.03 
Abn 11 46 22% 10 20% 0 0% 0.82 0.34 0.35 

t(6;9) 3 1% 2 4% 0 0% 0.26 1.00 1.00 
-7/7q- 8 4% 0 0% 0 0% 0.36 1.00 1.00 
-5/5q- 4 2% 0 0% 0 0% 0.59 1.00 1.00 

+8 14 7% 4 8% 0 0% 0.76 1.00 1.00 
+21 2 1% 0 0% 0 0% 1.00 1.00 1.00 

Pseudodiploid 20 10% 5 10% 2 29% 1.00 0.20 0.16 
Hyperdiploid 6 3% 2 4% 0 0% 0.66 1.00 1.00 
Hypodiploid 3 1% 2 4% 0 0% 0.26 1.00 1.00 

Unknown 141  30  5        



                

Response at end of first 
course                

Remission 290 87% 71 90% 12 100% 0.55 0.59 0.38 
PD 23 7% 7 9% 0 0% 0.71 0.59 1.00 
Die 22 7% 1 1% 0 0% 0.10 1.00 1.00 

W/D or unevaluable 12  2  0        
                    

 

 

Table 2. Allele specific Primers 

 

 

 

 

 

 

 

 

Primer sequences for allele-specific amplification 
 
Primer       Primer sequence and position 

 
     –1399      –1377 
 
F1 – (specific for wild-type allele):  5’ -AGTGTGTGCACAAGGCTGGCAAG-3’ 
F2 – (specific for mutant allele):  5’ -AGTGTGTGCACAAGGCTGGCAAA-3’ 
Reverse primer:    5’ GAACCTGAATTTGGATGAAGTTCC-3’ 
 
     –1006      –1029 
 

 

Table 3. FAS genotype in white cases versus white controls, p=0.03 

 Cases  
(White) 

Controls  
(White) 

 
White 

FAS 1377 N % N % P 

GG 246 80.4 402 87.6 <0.01 

GA 54 17.6 52 11.3 0.02 

AA 6 2.0 5 1.1 0.36 

 

 

 



 

Table 4. Treatment outcomes according to FAS genotype. 

 FAS 1377 GG FAS 1377 GA FAS 1377 AA p-value 

5 year OS 50 ± 6% 57 ± 11% 75 ± 25% 0.21 

5 year EFS 40 ± 5% 44 ± 11% 67 ± 27% 0.36 

5 year DFS 46 ± 6% 50 ± 12% 67 ± 27% 0.63 

5 year TRM 18 ± 4% 14 ± 8% 17 ± 22% 0.42 

5 year RR 41 ± 6% 38 ± 12% 19 ± 24% 0.47 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 1. Overall survival of pediatric AML patients according to FAS 1377 polymorphism status.   

Difference in OS from study entry between patients with FAS1377GG vs. 1377GA vs. 1377AA 

genotypes (p=0.21). 
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