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ABSTRACT

In a prospective cohort study, information on clinical parameters, tests and molec-

ular markers is often collected. Such information is useful to predict patient prognosis

and to select patients for targeted therapy. We propose a new graphical approach, the

positive predictive value (PPV) curve, to quantify the predictive accuracy of prog-

nostic markers measured on a continuous scale with censored failure time outcome.

The proposed method highlights the need to consider both predictive values and the

marker distribution in the population when evaluating a marker, and it provides a

common scale for comparing different markers. We consider both semiparametric

and nonparametric based estimating procedures. In addition, we provide asymptotic

distribution theory and resampling based procedures for making statistical inference.

We illustrate our approach with numerical studies and datasets from the Seattle Heart

Failure Study.
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1. INTRODUCTION

A common research question in modern medicine is: can putative markers predict

future progression of disease? We consider a marker to be any measurement with the

potential to signal onset or progression of disease. In disease screening and prognosis,

markers that predict future onset or progression of disease are sought. In epidemi-

ology, identified risk factors for many diseases are routinely used in public health

practice to classify subjects in regards to risk of future disease events. In these set-

tings predictive markers can be used to stratify patients according to future risk of a

(bad) outcome. This leads to more refined treatment or monitoring strategies. Before

adopting a marker in practice, however, (i) its predictive accuracy must be quanti-

fied, and (ii) it must be compared with other potential markers, including existing

prognostic systems, so that the best marker is selected for public health practice.

There are two main approaches to describing the accuracy of a dichotomous

marker, Y , where the binary outcome is D (e.g., diseased D = 1 versus not dis-

eased D = 0). The retrospective measures are the true and false positive fractions

(TPF, FPF), also known as sensitivity and 1-specificity. These are often of interest in

early phases of biomarker studies, since they quantify the extent to which the marker

reflects the true outcome and can be calculated directly from case-control studies.

However, positive and negative predictive values (PPV, NPV), the prospective mea-

sures, are of more interest to the end users of the test, the clinician and the patient,

since they quantify the subject’s risk of the outcome, D, given the test result Y .

Calculation of the PPV and NPV is typically performed with a cohort study.

The PPV and NPV are defined for dichotomous tests. No standard definition ex-

ists when biomarker Y is continuous. We propose to follow the approach of Moskowitz

and Pepe (2004b), who defined for 0 ≤ v ≤ 1 PPV(v) = P{D = 1|F (y) ≥ v} and

NPV(v) = P{D = 0|F (y) < v}, where F is the cumulative distribution function of
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Y . They plot PPV(v) versus v, where subjects with marker values at or above the

vth population percentile are considered as test positive (i.e., F (y) ≥ v), and those

below are regarded as negative. Note that NPV(v) is a function of v, PPV(v) and

the prevalence ρ, i.e., NPV(v) = 1 − {ρ− PPV(v)(1 − v)}v−1.

The receiver operating characteristic (ROC) curve is a plot of TPF(c) = P (Y ≥

c|D = 1) versus FPF(c) = P (Y ≥ c|D = 0) for c ∈ (−∞,∞), generalizing the notion

of (TPF,FPF) to continuous data by thresholding the marker. The PPV curve is a

natural analogue of the ROC curve for generalizing the notion of predictive value to

continuous markers. Importantly, using v as the X-axis rather than the raw marker

value provides a common scale for different markers that may be incomparable with

respect to their raw values. Moreover, since v is the proportion of the population

testing negative with the marker, it makes sense to compare the PPVs of markers

when they are rescaled to have equal vs. This highlights the need to consider both the

positivity probability, 1 − v, and the associated PPV(v) when evaluating a marker.

We generalize the definition of the PPV curve to outcome variables that are event

times. Specifically, for an event time T , we define for a marker Y measured at baseline

PPV(t, v) = P{T < t|F (y) ≥ v}.

A number of approaches to summarizing the predictive accuracy of a continuous

marker or covariate are available (Begg et al., 2000). Perhaps the most commonly

used approach in practice is to simply report the hazard ratio estimated from a Cox

regression analysis. This, however, ignores absolute risks and the distribution of sub-

jects across risk levels, fundamental aspects of the predictive value of a marker. Other

popular approaches include an R2 summary as the proportion of variation explained

by covariates (Schemper and Henderson, 2000) and the Brier score, a measure of resid-

ual variation (Graf et al., 1999). However, these measures may lack clinical relevance.

The notion of explained variation or degree of separation cannot be translated into
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a clinically meaningful quantity that is easily understood by clinicians and patients.

Furthermore, these measures do not easily facilitate formal comparisons between two

markers, and they do not distinguish between different types of errors.

We propose a new way of quantifying the predictive accuracy of prognostic markers

measured on continuous scale. In contrast to other suggested measures of predictive

accuracy for survival data, we seek a measure that is simple and meaningful for

clinical practice, amenable to the comparison of multiple markers, and flexible in its

assumptions about the underlying model and censoring mechanism.

2. ESTIMATION

We consider a prospective study where each subject denoted by the subscript i has a

marker Yi measured at the baseline. We let F (y) = P (Y ≤ y) denote the cumulative

distribution function and f(y) the corresponding density function. Also let Ti be the

time to failure for subject i. We assume that Ti may be censored at time Ci, and

we only observe Xi = min(Ti, Ci) and an associated censoring indicator ∆i where

∆i = 1 if Xi = Ti and 0 otherwise. Here (Yi, Xi,∆i) i = 1, · · · , n are independent. In

addition, we assume independent censoring such that Ci is conditionally independent

of the event time Ti given marker Yi. Although valid estimation of the PPV curve

does not depend on the requirement that risk P (T |Y = y) be a monotonic function of

Y , the assumption is desirable in a setting where a biomarker threshold value is used

for clinical decision making. For example, rising prostate specific antigen (PSA) may

predict poor disease-free survival in patients with prostate cancer. By convention we

assume that larger values of Y are associated with higher risks of failure.

2·1 The PPV Curve

We define the PPV curve as a plot of PPV(t, v) = P{T < t|F (y) ≥ v} versus v,

for v in an open interval of (0, 1). On the x-axis it shows the proportion of subjects

testing positive when a positive biomarker test is defined as exceeding the threshold
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corresponding to the vth percentile of Y in the population: Y ≥ F−1(v) or equiva-

lently F (y) ≥ v. On the y-axis it shows the risk of an event by time t for subjects

who satisfy that positivity criterion. A horizontal line corresponding to the marginal

event time probability P (T < t) serves as a benchmark PPV curve for completely

uninformative markers. More informative markers have PPV curves that rise more

steeply and reach higher levels.

Some appealing attributes of the PPV curve for practical use include its ease in

interpretation and visualization of useful quantities. For example, if only subjects

in the top 10th percentile of risk are eligible for an intervention study, one can ob-

serve the expected proportion of such subjects with an event by time t, PPV(t, 0.90).

Conversely if a fraction p to have an event by time t is desired, one can observe the

corresponding fraction 1 − v of the population that will be required to test positive

with the marker, PPV−1(t; p) = v, from a monotonic PPV curve. The PPV curve

also provides a common meaningful scale for comparing multiple markers. Lastly, the

PPV curve can be used to suggest thresholds that are optimal for defining biomarker

positivity. Although PPV curves have been used in the applied literature (e.g. Blanks

et al., 2001) they have only recently been formally considered in the statistical lit-

erature (Moskowitz and Pepe, 2004b). We extend the idea from the application to

binary outcomes considered by Moskowitz and Pepe (2004b) to event time outcomes.

2·2 Estimation: Non-parametric Approaches

We first describe a class of nonparametric approaches. Such methods do not

impose modeling assumptions on the relationship between the marker and survival

and therefore will be broadly applicable to many practical settings.

Under independent censoring: We first consider the case where the censoring

process C does not depend on Y . A natural estimator for PPV(t, v) can be ob-

tained by estimating the survival distribution based on the subset of subjects with
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F̂ (y) ≥ v, where F̂ (y) = n−1
∑n

i=1 I(Yi < y) is the empirical distribution function

of Y . The survival probability function can be estimated nonparametrically using

either the Aalen-Nelson or Kaplan-Meier estimator. Since these two estimators are

asymptotically equivalent, we only consider the Aalen-Nelson estimator. Specifically,

let Λv(t) be the cumulative hazard function of T among subjects with F (Y ) ≥ v,

then PPV(t, v) = 1 − exp{−Λv(t)} can be estimated by

P̃PV(t, v) = 1 − exp
{
−Λ̃v(t)

}
= 1 − exp

{
−

∫ t

0

dÑv(s)

π̃v(s)

}
, (2·1)

where Ñv(s) = n−1
∑

i ŵv(Yi)Ni(s), Ni(s) = I(Xi ≤ s)∆i, ŵv(Yi) = I{F̂ (Yi) ≥ v}

and π̃v(s) = n−1
∑

i ŵv(Yi)I(Xi ≥ s).

Under marker dependent censoring: Here, we allow C to depend on Y , but

assume that T remains independent of C conditional on Y . In the presence of such

dependence, P̃PV(t, v) is subject to bias. For example if individuals with lower marker

values tend to be censored earlier then we may expect P̃PV(t, v) to be biased down-

ward. This problem often arises in situations where a prognostic biomarker is available

and the frequency of follow-up efforts is influenced by the marker value measured at

baseline. For example, in many AIDS studies individual’s censoring status may be

related to CD4 counts, a well-accepted marker for survival. To account for marker

dependent censoring, we note that

PPV(t, v) = 1 −
P{T ≥ t, Y ≥ F−1(v)}

P{F (Y ) ≥ v}
= 1 − (1 − v)−1

∫ ∞

F−1(v)

Sy(t)dF (y),

where Sy(t) = P (T ≥ t | Y = y) is the conditional survival function. Although T

may depend on C conditional on F (Y ) ≥ v, T is independent of C given Y = y and

thus Sy(t) can be estimated non-parametrically. In particular we consider the kernel

estimator for Sy(t) (Beran, 1981; Dabrowska, 1989; Akritas, 1994) :

Ŝy(t) = exp
{
−Λ̂y(t)

}
= exp

{
−

∫ t

0

dN̂y(s)

π̂y(s)

}
,
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where N̂y(s) = n−1
∑n

i=1Kh(Yi−y)Ni(s), π̂y(s) = n−1
∑n

i=1Kh(Yi−y)I(Xi ≥ s), and

Kh(x) = K(x/h)/h. Here K is a given symmetric smooth kernel density function,

and h is the bandwidth such that nh2 → ∞ and nh4 → 0 as n → ∞. A plug-in

estimator for PPV(t, v) based on the bivariate distribution function is

P̂PV(t, v) = 1 − (1 − v)−1

∫ ∞

bF−1(v)

Ŝy(t)dF̂ (y). (2·2)

2·3 Estimation: A Semi-parametric Approach

The proposed PPV curve can also be estimated using a regression model ap-

proach. Compared with a nonparametric estimator, parametric methods are usually

more efficient when the underlying assumptions hold. In addition, marker-dependent

censoring is easily accommodated. As an illustration, we assume a proportional haz-

ards model for survival time of the form λ(t|Y ) = λ0(t) exp(β0Y ). Under this model

the survival function is S(t|y) = exp{−Λ0(t) exp(β0y)}, where Λ0(t) =
∫ t

0
λ0(u)du is

the cumulative baseline hazard function. A plug-in estimator for PPV(t, v) based on

the conditional survival probability is

P̂PV
∗
(t, v) = 1 − (1 − v)−1

∫ ∞

bF−1(v)

exp
{
−Λ̂0(t) exp

(
β̂y
)}

dF̂ (y), (2·3)

where β̂ is the maximum partial likelihood estimator of β0 and Λ̂0(t) is the Breslow

estimator of Λ0(t).

To construct a PPV curve, one can select a grid of points v ∈ (0, 1), and esti-

mate the corresponding values of PPV{t, F̂−1(v)}. For example, the key quantity
∫∞

bF−1(v)
Ŝy(t)dF̂ (y) in P̂PV(t, v) can be calculated by first estimating the weighted

Aalen-Nelson estimator at each y, and then integrating over the range of y with

y > F̂−1(v).

2·4 Evaluating and Comparing Predictive Values of Markers

A few summaries based on the PPV curve are of interest. For example, we may

wish to make inference about risk of t-year mortality for these 100(1−v)% individuals
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testing positive, i.e., PPV(t, v) at specified values for v and t; or the fraction of the

population testing positive that corresponds to a PPV value of p by year t, i.e., the

inverse PPV−1(t; p) at specified values for p and t if the curve is monotonic.

A fundamental attraction of the PPV curve is that it provides a common meaning-

ful scale for comparing markers. We will first consider comparing the PPV(t, v) of two

markers, Y1 and Y2, at any given (t, v) or jointly over a set of points {(tk, vk), k =

1, ..., K}. Typically marker data arise from study designs where both markers are

measured on each individual. Based on such paired data, one may estimate the

relative predictive value, rPPV(t, v) = PPVY1
(t, v)/PPVY2

(t, v), or ∆PPV(t, v) =

PPVY1
(t, v) − PPVY2

(t, v) using the aforementioned PPV estimators.

3. INFERENCE IN LARGE SAMPLES

We show in Appendix A that P̃PV(t, v) is uniformly consistent for PPV(t, v). Further-

more, the process W̃v(t) ≡ n
1

2{P̃PV(t, v) − PPV(t, v)} is asymptotically equivalent

to n− 1

2

∑n
i=1 ηi(t, v) and converges weakly to a zero mean Gaussian process, where

ηi(t, v) is defined in (A·1) of Appendix A.

To obtain a pointwise confidence interval and a simultaneous confidence band

for PPV(t, v), we will use the resampling method (Parzen et al., 1994) which has

been successfully extended to approximate the distribution of a process (see Park

and Wei (2003) for details). Specifically, we first generate J independent samples

of standard normal random variables, {N (j)
i , i = 1, . . . , n}, for j = 1, ..., J . Let

W
(j)
v (t) = n− 1

2

∑n
i=1 η̂i(t, v)N

(j)
i with η̂i(t, v) obtained by replacing all theoretical

quantities in ηi(t, v) by their empirical counterparts. The function ∂Λ(t, c)/∂c in

η̂i(t, v) can be estimated with the finite difference estimator. Conditional on the

data, the process Wv(t) has the same limiting covariance function as that of W
(j)
v (t).

Therefore, we may approximate the distribution of W̃v(t) based on the realizations

of {W
(j)
v (t)}. Now, based on a functional delta method, we construct 100(1 − α)%
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confidence intervals for PPV(t, v) as

1 − exp

(
−Λ̃v(t) exp

[
±

dασ̃v(t)

Λ̃v(t) exp{−Λ̃v(t)}

])
,

where σ̃v(t)
2 = J−1

∑J
j=1 W

(j)
v (t)2, dα is the 100(1−α/2)th percentile of the standard

normal for point-wise confidence intervals, and dα is obtained as the 100(1 − α)th

empirical quantile of {supv∈{va,vb}
|W(j)

v (t)/σ̃v(t)|, j = 1, ..., J} for simultaneous confi-

dence intervals.

The uniform consistency of P̂PV(t, v) follows directly from the uniform consis-

tency of Λ̂y(t) and F̂ (y). To obtain interval estimates of PPV(t, v), we show in

Appendix B that Ŵv(t) ≡ n
1

2

{
P̂PV(t, v) − PPV(t, v)

}
is asymptotically equivalent

to n− 1

2

∑n
i=1 ξi(t, v), and converges weakly to a zero-mean Gaussian process, where

ξi(t, v) is defined in (B·1) of Appendix B. The distribution of Ŵv(t) can be approxi-

mated via the resampling methods by estimating all the unknown quantities in ξi(t, v)

empirically. Note that the density function f(·) in ξi(t, v) can be estimated using a

kernel estimator. Confidence intervals for PPV(t, v) can be constructed accordingly.

In Appendix C, we show that Ŵ∗
v (t) ≡ n

1

2

{
P̂PV

∗
(t, v) − PPV(t, v)

}
is asymptot-

ically equivalent to n− 1

2

∑n
i=1 ζi(t, v), and converges weakly to a zero-mean Gaussian

process, where ζi(t, v) is defined in (C·1). Subsequent inference procedures follow that

of P̂PV(t, v). To make inference about PPV−1(t; p), we note that by the stochastic

equicontinuity of Ŵv(t), n
1

2{P̂PV
−1

(t; p)−PPV−1(t; p)} is asymptotically equivalent

to ∂PPV(t, v)/∂vŴv(t). Thus the distribution of P̂PV
−1

(t; p) can also be derived

similarly based on that of Ŵv(t).

To test whether two markers measured simultaneously on the same subject have

significantly different predictive values, we test the hypothesis

H0 : rPPV(t, v) ≡
PPVY1

(t, v)

PPVY2
(t, v)

= 1.
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To obtain a confidence interval for rPPV(t, v), we consider its log-transformation and

note that by a continuous mapping theorem, n
1

2{log{rP̂PV(t, v)}−log{rPPV(t, v)} is

asymptotically equivalent to n− 1

2

∑n
i=1{ξ

(Y1)
i (t, v)/PPVY1

(t, v)−ξ(Y2)
i (t, v)/PPVY2

(t, v)}

whose distribution can be approximated using the resampling method as well.

Simulation studies were performed to examine the finite sample properties of the

proposed procedures and to investigate the impact of model assumptions on the two

classes of estimators. The results suggest that our methods provide reasonably un-

biased estimates and our nonparametric estimators are quite robust. See JASA sup-

plemental web site for details on simulation results.

4. EXAMPLE: THE SEATTLE HEART FAILURE MODEL FOR PRE-

DICTION OF SURVIVAL IN HEART FAILURE

We illustrate our methods with an example in the context of predicting survival

among patients with heart failure. Heart failure is a serious condition with highly

variable outcome. Often clinicians need to counsel patients about prognosis and to

make decisions about medications, transplantation and end of life care. The Seattle

Heart Failure Model (SHFM), a multivariate Cox model, was derived in a cohort of

heart failure patients and prospectively validated in 5 additional cohorts with nearly

10,000 heart failure patients. The model incorporates 13 variables relating to clinical

status and laboratory parameters with higher values of the SHFM score being more

indicative of worse prognosis. Levy et al. (2006) have provided a complete description.

First we wish to quantify the accuracy of the SHFM score for predicting t-year sur-

vival. We consider data from the Val-HeFT study, a cohort independent of the origi-

nal derivation trial. Val-HeFT is a randomized trial in 5,010 patients in 16 countries.

The median follow-up was 2 years, with 976 death observed over the course of the

study. Since there was no prespecified cutoff value for defining a positive result, time-

dependent PPV curves provide graphical displays that characterize the risk of death
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by t year among the (1− v)*100% of the population with a positive test, across a full

spectum of v ∈ (0, 1). We considered PPV curves based on the three proposed esti-

mators. A proportional hazards model of the form λ(t|Y ) = λ0(t)exp(β SHFM score)

was used for P̂PV
∗
(t, v). For illustration we randomly selected 1000 patients from

this study. For P̂PV(t, v), let c denote the standard deviation of SHFM scores, the

bandwidth h was chosen to be c/n1/3 ≈ 0.07. The estimates are presented in Table

1. Figure 1 constructs PPV curves (left panel) and NPV curves (right panel) at

t = 1 for v ranging from 0.05 to 0.95. Starting from the point P (T < 1) = 0.08,

the PPV curve increases steeply, an indication that the SHFM score is informative

for identifying patients at greater risk of death by the first year. For example, at

v = 0.5, the corresponding P̃PV(t = 1, v = 0.5) = 0.14 (95%CI: (0.11, 0.17)) whereas

P̃PV(t = 1, v = 0.95) = 0.29 (95%CI: (0.19, 0.40)) at v = 0.95. In other words, if the

score is used to refer patients for a novel therapy, among patients whose scores are in

the top 5% of the population, on average 29% would have failed by year 1; however

among patients whose scores are in the top 50% of the population, on average only

14% would have failed by year 1. Such information may be helpful for clinicians

to determine how many patients with heart failure are eligible for more aggressive

therapy such as cardiac resynchronization. As shown in Figure 1, there existed a

substantial discrepancy between the PPV curve calculated based on a Cox regression

model and those based on nonparametric procedures, suggesting that the Cox model

may not fit the data well. In this example, consideration of a smoothed estimator

may be advantageous as it may be more robust.

If a PPV value p at t is considered for clinical decision making, what percentage of

the population will be selected based on the SHFM score? We address this question

by studying PPV−1(t = 1; p). For this study, if the goal is to achieve a PPV value of

0.25 by year one, then it requires that approximately 15% (95%CI: (0.06, 0.24))(i.e.,
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1-PPV−1(t = 1; p = 0.25)) of the population test positive, i.e., we choose the 85th

percentile of the marker (score) as the threshold for defining positivity.

One imminent question here is whether the SHFM provides improved prognostic

potential over existing heart failure models. The Toronto heart failure model (THFM)

was derived in hospitalized patients using information identified shortly after hospi-

tal presentation (Lee et al., 2003). It is of interest to compare the capacities of the

two models for predicting 1-, 2- and 3-year mortality risk in populations that reflect

broad range of systolic heart failure. Both prognostic scores appear to be signifi-

cant predictors of survival from Cox models: hazards ratio (HR) for SHFM is 2.15

(95%CI: (2.01,2.31)), and 1.04 (95%CI: (1.03,1.04)) for THFM. The R2s calculated

from the Cox models are 0.075 and 0.042 for SHFM and THFM respectively.

We compare the predictive accuracies of the SHFM score and THFM score using

data from the entire cohort of 5010 patients. In Table 2, we list for selected v and for

t = 1, 2, and 3 year the estimated rPPV and their 95% pointwise confidence intervals

and simultaneous confidence band calculated over the region v = [0.05, 0.95]. All

rPPV(t, v)s with v ≥ 0.90 are significantly higher than 1, however only those for

t = 2 remain significant if the 95% confidence bands are considered. We conclude

here that the SHFM is more predictive of 1-, 2-, and 3-year mortality risks than

THFM when a small fraction of the population is selected for further treatment.

5. DISCUSSION

In this paper we have introduced a graphical approach for quantifying and comparing

the prognostic accuracies of continuous markers with censored failure time outcome.

Observe that a marker may be useful for prediction but perform poorly for classifica-

tion. Gail and Pfeiffer (2005) noted that performance criteria of markers for selecting

patients for cancer prevention interventions are not the same as those required of

markers for cancer screening. Our motivating applications are concerned with predic-
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tion and risk stratification. Therefore it is appropriate to evaluate them in terms of

their prospective accuracy parameters, PPV and NPV. Much work in the literature

has focused on evaluating the performance of a marker as a classifier, i.e., with respect

to its retrospective accuracy; however clinically meaningful methods for quantifying

the prospective prognostic accuracy have not been well developed (Moskowitz and

Pepe, 2004a). The work presented here offers such a method.

Several approaches for estimating the PPV and NPV curves are studied. The

semiparametric approach is more efficient than the nonparametric procedures, but can

be sensitive to modeling assumptions about how the marker is related to survival. The

two nonparametric approaches are more flexible, and the kernel smoothing estimator

we considered also takes into account marker dependent censoring. These methods

will be broadly applicable to many practical settings.

There are two considerations one must take into account when adopting the PPV

curve in practice. First, PPVs and NPVs depend on prevalence of the outcome; con-

sequently they reflect characteristics of the cohort that gave rise to the curves. It is

therefore important to assure that the research cohort indeed constitutes a random

sample of the general population of interest where the clinical decision rules will be

applied (see Pepe et al. (2007) for a discussion of this issue). The Val-HeFT study

consists of participants from 16 countries. It is conceivable that prospective accuracy

might be different when applied to an individual country and it should be further

evaluated in subcohorts with different heart failure rates. Second, in this paper we

considered only the predictive performance of a baseline marker. Frequently in prac-

tice repeated measurements are collected for monitoring disease progression, and the

‘updated’ prediction of risk as a function of current and past marker information is of

interest. Estimating such a quantity requires more deliberation. Further investigation

on adopting the notion of PPV curve for longitudinal markers is warranted.
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APPENDIX

Throughout we assume that the joint density of T , C and Y is continuously dif-

ferentiable and the marker Y is bounded. We consider v ∈ [pl, pu] ⊂ (0, 1) and

t ∈ [τ1, τ2], where τ1 and τ2 are given constants such that P (X < τ1) > 0 and

P (X > τ2) > 0. In addition, we assume that the first and second order derivatives of

F (y) are bounded away from 0 for y ∈ (−∞,∞). Λ(t, c) is continuously differentiable

with sups,c{Λ(t, c) + Λ̇(s, c)} <∞, where Λ̇(s, c) = ∂Λ(s, c)/∂c.

A. Asymptotic Properties of P̃PV(t, v)

Since P̃PV(t, v) = 1− exp{Λ̃v(t)} is a smooth monotonic transformation of Λ̃v(t), we

first derive the asymptotic properties for Λ̃v(t). To this end, we define

N̄(s, c) = n−1
∑

Yi≥c

I(Xi ≤ s)∆i π̄(s, c) = n−1
∑

Yi≥c

I(Xi ≥ s), Λ̄(t, c) =

∫ t

0

dN̄(s, c)

π̄(s, c)

A(s, c) = E{N̄(s, c)}, π(s, c) = E{π̄(s, c)}, and Λ(t, c) =
∫ t

0
dA(s, c)/π(s, c). It

follows from a uniform law of large numbers (Pollard, 1990) that supt,c |Λ̄(t, c) −

Λ(t, c)| → 0, almost surely. This, together with the uniform consistency of ĉv =

F̂−1(v) for cv = F−1(v) and a continuous mapping theorem, implies that supt,v |Λ̃v(t)−

Λv(t)| → 0 almost surely. To derive the large sample distribution for Λ̃v(t), we write

n
1

2{Λ̃v(t) − Λv(t)} = n
1

2

{
Λ̄(t, cv) − Λ(t, cv)

}
+ n

1

2

{
Λ̄(t, ĉv) − Λ̄(t, cv)

}
.

It follows from standard empirical processes theory (Pollard, 1990) that n
1

2{Λ̄(t, c)−

Λ(t, c)} is asymptotically equivalent to n− 1

2

∑
i ηi1(t, c) and converges weakly to a zero

mean Gaussian process in (t, c), where

ηi1(t, c) =

∫ t

0

I(Yi ≥ c)π(s, c)−1{dNi(s) − π(s, c)−1I(Xi ≥ s)dA(s, c)}.

It follows that n
1

2{Λ̄(t, ĉv) − Λ̄(t, cv)} = Λ̇(t, cv)n
1

2 (ĉv − cv) + op(1), where Λ̇(s, c) =

∂Λ(s, c)/∂c. Here and throughout, the op(1) is uniform in t and v. This, together
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with the weak convergence of the quantile process n
1

2 (ĉv−cv) in v, implies that W̃v(t)

is asymptotically equivalent to n− 1

2

∑
i ηi(t, v), where

ηi(t, v) =
{

1 − P̃PV(t, v)
}[

η1i(t, cv) −
Λ̇(t, cv)

f(cv)
{I(Yi ≤ cv) − v}

]
, (A·1)

and f(y) = dF (y)/dy. It then follows from a functional central limit theorem (Pollard,

1990) that W̃v(t) converges weakly to a zero-mean Gaussian process.

B. Asymptotic Properties of P̂PV(t, v)

We require the same conditions as specified in Du and Akritas (2002). Briefly, K(·)

is a twice continuously differentiable symmetric probability density function with

bounded second derivative. To derive the large sample distribution for P̂PV(t, v), we

write

Ŵv(t) = n
1

2{P̂PV(t, v) − PPV(t, v)} = {Ŵ1v(t) + Ŵ2v(t)}/(1 − v),

where Ŵ1v(t) = n
1

2

∫∞

bcv
{e−

bΛy(t) − e−Λy(t)}dF̂ (y) and Ŵ2v(t) = n
1

2{
∫∞

bcv
Sy(t)dF̂ (y) −

∫∞

cv
Sy(t)dF (y)}. To approximate the distribution of Ŵ1v(t), we note that

sup
y

∣∣∣F̂ (y) − F (y)
∣∣∣+ sup

t,y

∣∣∣Λ̂y(t) − Λy(t)
∣∣∣+ sup

v
|ĉv − cv| = op(n

− 1

4 ).

This, together with a Taylor series expansion and Lemma A.3 of Bilias et al. (1997),

implies that Ŵ1v(t) = −n
1

2

∫∞

cv
Sy(t){ Λ̂y(t)−Λy(t)}dF (y)+op(1). Furthermore, from

the asymptotic expansions for Λ̂y(t) in Du and Ariktas (2002), we have

Ŵ1v(t) = −n
1

2

∫ ∞

cv

Sy(t)

{
1

nh

n∑

i=1

K

(
y − Yi

h

)
My(t;Xi,∆i)

}
dy

where My(t, Xi,∆i) =
∫ t

0

{
dNi(s)
πy(s)

− dAy(s)

πy(s)2
I(Xi ≥ s)

}
, πy(s) = P (X ≥ s | Y = y) and

Ay(s) = E{N(s) | Y = y}. Now, by a change variable ψ = y−Yi

h
and nh4 = op(1),

Ŵ1v(t) = −n− 1

2

n∑

i=1

∫ ∞

−∞

I (Yi ≥ cv)K(ψ)SYi
(t)MYi

(t;Xi,∆i)dψ +O(n
1

2h2) + op(1)

= −n− 1

2

n∑

i=1

ξi1(t, v) + op(1)
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where ξi1(t, v) = I(Yi ≥ cv)SYi
(t)MYi

(t;Xi,∆i). For Ŵ2v(t), we note that

Ŵ2v(t) = n− 1

2

n∑

i=1

∫ ∞

cv

Sy(t)d{I(Yi ≤ y) − F (y)} − n
1

2{ĉv − cv}Scv
(t)f(cv) + op(1)

= n− 1

2

n∑

i=1

[
SYi

(t)I(Yi > cv) −

∫ ∞

cv

Sy(t)dF (y) + Scv
(t){1(Yi ≤ cv) − v}

]
+ op(1).

It follows that Ŵv(t) = n− 1

2

∑n
i=1 ξi(t, v) + op(1),

ξi(t, v) =
ξi1(t, v) + {SYi

(t) − Scv
(t)}I(Yi > cv)

1 − v
+ Scv

(t) − PPV(t, v). (B·1)

This, together with a functional central limit theorem, implies that Ŵv(t) converges

weakly to a zero-mean Gaussian process.

C. Asymptotic Properties of P̂PV
∗
(t, v)

We assume the same regularity conditions as in Andersen and Gill (1982), who showed

that n
1

2 (β̂ − β0) is asymptotically normal and n
1

2 (Λ̂0(t) − Λ0(t)) converges weakly

to a Gaussian process. Similar to the derivation for P̂PV(t, v), following standard

empirical processes theory (Pollard, 1990), we can show that the process Ŵ ∗
v (t) =

n1/2{P̂PV
∗
(v, t) − PPV(v, t)} = n− 1

2

∑n
i=1 ζi(t, v) + op(1), with

ζi(t, v) =
I(Yj > cv){ζi1(β0, t, Yj) + SYi

(t) − Scv
(t)}

1 − v
+ Scv

(t) − PPV(t, v), (C·1)

where

ζi1(β0, t, y,∆i, Xi) = Sy(t)e
β0y

[∫ t

0

dMi(u)

s0(u, β0)

+ {Λ0(t)y + H(t, β0)} I
−1(β0)

∫ ∞

0

{
Yi −

r1(u, β0)

r0(u, β0)

}
dMi(u)

]
,

Mi(t) = Ni(t)−
∫ t

0
I(Xi ≥ u)eβYidΛ0(u), rb(t, β) = E{I(Xi ≥ t)Y b

i e
βYi}, H(β, t) is the

limit of ∂Λ̂0(t, β)/∂β, and I(β) =
∫∞

0
{r2(β, u)/r0(β, u)−r2

1(β, u)/r
2
0(β, u)}dE{N(u)}.
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Table 1

Estimates (95% Confidence Intervals) of NPV(t, v), PPV(t, v) and PPV−1(p) with
Various Sample Percentiles (v) and Average Risk Probabilities (p) Evaluated at

t = 1 Year after Enrollment.

NPV
v .1 .3 .5 .7 .9

ÑPV(t, v) .97(.94, .99) .96(.94, .98) .96(.94, .98) .96(.94,.97) .93(.92, .95)

N̂PV(t, v) .98(.94, 1.00) .96(.94, .99) .96(.94, .98) .96(.94, .97) .94(.92, .95)

N̂PV
∗
(t, v) .97(.96, .98) .96(.95, .97) .95(.94, .96) .94(.93, .96) .93(.91, .94)

PPV
v .1 .3 .5 .7 .9

P̃PV(t, v) .09(.08, .11) .11(.09, .13) .14(.11, .17) .19(.15, .24) .29(.19, .40)

P̂PV(t, v) .09(.07, .11) .11(.09, .13) .13(.10, .16) .19(.14, .23) .29(.20, .38)

P̂PV
∗
(t, v) .09(.08, .11) .11(.09, .13) .13(.10, .15) .16(.13, .19) .23(.18, .27)

PPV−1(t, p)
p .10 .15 .20 .25 .30

P̂PV
−1

(t, p) .23 (.01, .45) .59 (.46, .73) .75(.64, .86) .85(.76, .94) .90(.83, .96)

Table 2

Estimates (95% Confidence Intervals), [95% Confidence bands] of rPPV (t, v) at
t=1, 2, 3 Years with Various Sample Percentiles (v).

v= .80 v=.85 v=.90 v=.95
t = 1 1.11 (.98, 1.26) 1.14 (.98, 1.32) 1.26 (1.05, 1.51) 1.40 (1.11, 1.76)

[.91, 1.36] [.89, 1.44] [.93, 1.70] [.96, 2.05]
t = 2 1.08 (.99, 1.19) 1.14 (1.02, 1.27) 1.25 (1.09, 1.43) 1.31 (1.09, 1.58)

[.95, 1.23] [.98, 1.32] [1.03, 1.51] [1.00, 1.72]
t = 3 1.05 (.95, 1.16) 1.06 (.95, 1.19) 1.15 (.99, 1.34) 1.26 (1.06,1.49)

[.90, 1.21] [.90, 1.26] [.92, 1.43] [.98,1.61]
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Figure 1. PPV (left panel) and NPV (right panel) curves and 95% confidence intervals and bands for v ∈ (0.05, 0.95)
and at t = 1 year after enrollment in Seattle Heart Failure Study. Solid lines: estimates from Aalen estimator; dotted
lines: smooth estimator; short dashed lines: the Cox estimator. long dashed lines, 95% confidence intervals and
confidence bands (outer curves) for Aalen estimator; Shaded areas are confidence interval for the smooth estimator.
Horizontal lines are for P (T < 1 year) in the PPV plot and P (T ≥ 1 year) in the NPV plot.
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