



Name_	
Date	Period

ELECTROPHORESIS EXPLORATION RECORD SHEET

Step 1 & 2:

How do you know where to connect the electrical leads? Explain:

IF TWO BOXES ARE CONNECTED TO ONE POWER SUPPLY, DIVIDE THE CURRENT SHOWN IN HALF TO GET MILLIAMPS PER BOX. DO THIS THROUGHOUT THE LAB.


STEP	GEL BOX CONTENTS	POTENTIAL	CURRENT	OTHER OBSERVATIONS
		(volts)	(milliamps)	(color changes, bubbles, pH, etc.)
4	Empty gel box	100 V		
	(air only inside)			
6	Distilled water	100 V		
8	Distilled H ₂ 0 + NaCl			
	1 box connected	100 V		
	2 boxes connected	100 V		
9	Distilled H ₂ 0 + NaCl			
	a	25 V		
	(Your choice) b	V		
	С	100 V		
	(Your choice) d	V		
	e	250 V		
11	Distilled H ₂ 0 + NaCl	100 V		cathode pH= anode pH=
13 / 14	Distilled H ₂ 0 + NaCl	100 V		
	+ phenol red			cathode pH= anode pH=
15	1X TAE + phenol red	100 V		buffer pH =
16	1X TAE + phenol red	100 V		cathode pH= anode pH=

POSTLAB

1. Use your data to complete this graph.

Note: use only the data from step 9 to create your graph!

Current (in milliamps)

Potential (in volts)

2. Summarize, in your own words, the relationship between voltage and current.

When and where were gases produced?_____

4. What was the source of the gases you observed?_____

- 5. What colors did the phenol red indicator turn when you added it to the salt water and let current flow for 3-5 minutes?
- 6. What did this color change (See Question 5) indicate about the pH in the gel box?_____
- When you used buffer instead of salt solution, did you observe the same phenol red color changes as in Question #5? Explain_____
- 8. What effect, then, must buffer have on the pH of a solution?_____
- 9. Explain the purpose of adding (a) salt and (b) buffer to the gel box.