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Summary 

Background: Many different environmental and genetic sex-determination mechanisms 

are found in nature.  Closely related species can use different master sex-determination 

switches, suggesting that these developmental pathways can evolve very rapidly.  

Previous cytological studies suggest that recently diverged species of stickleback fish 

have different sex chromosome complements.  Here we investigate the genetic and 

chromosomal mechanisms that underlie sex determination in the threespine stickleback 

(Gasterosteus aculeatus). 

Results: Genome-wide linkage mapping identifies a single chromosome region at the 

distal end of linkage group (LG) 19 that controls male or female sexual development in 

threespine sticklebacks.  Although sex chromosomes are not cytogenetically visible in 

this species, several lines of evidence suggest that LG 19 is an evolving sex 

chromosome system, similar to the XX female/ XY male system in many other species: 

(1) Males are consistently heterozygous for unique alleles in this region; (2) 

Recombination between loci linked to the sex-determination region is reduced in male 

meiosis relative to female meiosis; (3) Sequence analysis of X and Y-specific bacterial 

artificial chromosome (BAC) clones from the sex-determination region reveals many 

sequence differences between the X and Y-specific clones; and (4) The Y chromosome 

has accumulated transposable elements and local duplications. 

Conclusions: Taken together, our data suggest that threespine sticklebacks have a 

simple chromosomal mechanism for sex determination based on a nascent Y 

chromosome that is less than 10 million years old.  Further analysis of the stickleback 
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system will provide an exciting window into the evolution of sex-determination pathways 

and sex chromosomes in vertebrates. 

 

Introduction 

The decision to become a male or a female is one of the most fundamental in the life of 

an organism.  However, the mechanisms that govern this choice are diverse, spanning 

myriad environmental and genetic sex-determination systems.  Diverse sex-

determination systems can be found in closely related species, suggesting that sex-

determination mechanisms can evolve very rapidly.  Genetic and molecular analyses of 

sex-determination pathways have identified many of the key regulatory molecules and 

pathways underlying sex-determination pathways in C. elegans, D. melanogaster and 

eutherian mammals [1, 2].  One important finding from this work is that master sex-

determination genes are not conserved between divergent taxa [3-6].  This is surprising, 

given that many genes found in other developmental pathways are conserved between 

worms, flies and mice [7].  However, recent data have provided evidence for 

conservation of some downstream genes in divergent organisms with very different 

mechanisms of sex determination [3, 5, 6, 8-9]. A theme emerging from these studies is 

that evolutionary lability at the top of the sex-determination hierarchy is coupled with 

stability towards the bottom of the hierarchy [10].  Comparisons between closely related 

species with divergent sex-determining mechanisms are now needed in order to 

understand how these developmental hierarchies evolve. 

 The evolution of genetic sex determination is often accompanied by the evolution 

of heteromorphic sex chromosomes.  The first step in the evolution of a sex 
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chromosome is the existence of an autosomal gene with two alleles, where 

homozygosity leads to the development of one sex and heterozygosity to the other sex.  

The evolution of heteromorphic sex chromosomes involves the suppression of 

recombination between homologous chromosomes, probably to reduce recombination 

between the sex-determination locus and linked genes with sex-specific fitness effects 

[11-13].  This suppression of recombination with the maintenance of one chromosome 

in a constant heterozygous state ultimately results in degeneration of sex-linked loci in 

the heterogametic sex [11, 13-14].  

 Several models have been put forth to explain the evolution of heteromorphic sex 

chromosomes [15-17], but empirical evidence in support of these theories is limited.  

While the complete sequence of the human Y chromosome provides an interesting 

picture of a highly evolved sex chromosome [18], the human Y chromosome is 300 

million years old and does not provide insight into the mechanisms that underlie the 

initial stages of sex chromosome evolution.  Empirical data from evolving Y-

chromosome systems in plant and Drosophila species have provided key insights into 

Y-chromosome degeneration, but more independent examples are needed to provide a 

complete picture of this process [17, 19]. 

 Fish are particularly attractive model systems in which to study the evolution of 

sex-determination mechanisms and sex chromosomes.  Both environmental and 

genetic sex-determination mechanisms are represented in fish species [20].  In fish with 

environmentally determined sex, temperature or social interactions can be the primary 

sex determinant.  Genetic mechanisms of sex determination in fish may be polygenic or 

simple and associated either with no cytogenetically visible sex chromosomes or with 
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heteromorphic sex chromosomes in either males (XY systems) or females (ZW 

systems).  This wide diversity of sex-determination mechanisms can be found even in 

closely related fish species, supporting the hypothesis that this developmental pathway 

is evolutionarily plastic and that sex-determination mechanisms and sex chromosomes 

can evolve very rapidly. 

Stickleback fish (family Gasterosteidae) provide an excellent system in which to 

analyze the genetic and molecular mechanisms that underlie the evolution of sex 

determination and sex chromosomes.  Threespine sticklebacks (Gasterosteus 

aculeatus) are small teleost fish found throughout the Northern hemisphere, and their 

behavior, ecology and evolution have been extensively characterized [21].  Previous 

cytological studies suggest that threespine sticklebacks lack sexually dimorphic 

chromosomes although closely related species do have distinguishable sex 

chromosomes in either males or females  [22-23].  Some evidence had suggested that 

temperature and density of rearing could affect sex ratios in threespine sticklebacks 

[24].  However, an allozyme of isocitrate dehydrogenase (IDH) was found to be sexually 

dimorphic in multiple threespine stickleback populations in California and British 

Columbia [25-27], and DNA markers have also been reported with sex-specific alleles 

[28].  These results suggest that there might be a genetic basis for sex determination in 

threespine sticklebacks despite the absence of visible sex chromosomes in this species.   

Here we take advantage of extensive new molecular tools in Gasterosteus 

aculeatus [29-30] to map the genetic basis of sex determination in threespine 

sticklebacks, clone a chromosome region linked to the sex-determination locus, analyze 

the sex-linked regions for sequence characteristics typically found in evolving sex 
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chromosomes, and study the evolution of sex-linked loci in different stickleback 

populations. 

 

Results and Discussion 

Male sex is determined by a single chromosome region in threespine 

sticklebacks  

To determine if phenotypic sex in threespine sticklebacks is controlled primarily by 

genetic or environmental factors, we analyzed the progeny of two independent genetic 

crosses:  the Priest backcross [29] and the Paxton intercross [31-32].  The progeny of 

each cross were genotyped with the large panel of microsatellite markers developed for 

threespine sticklebacks [29].  In both crosses, development of testes showed nearly 

perfect concordance with the inheritance of markers at the distal end of LG 19.   

Previous data identified a male-specific protein polymorphism in isocitrate 

dehydrogenase (IDH) in multiple populations from the west coast of North America [25-

27].  We identified the Idh gene in a cDNA clone isolated in our original screen for 

microsatellite markers [29].  We designed PCR primers to the 3’ UTR of Idh and found 

that the primers amplified a 302 bp band from females, but amplified both a 302 bp 

band and a 271 bp band from males (Figure 1).  This polymorphism segregates nearly 

perfectly with phenotypic sex in both the Priest and Paxton crosses, suggesting that it is 

very tightly linked to a master sex-determination locus in threespine sticklebacks (Figure 

1).         
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Recombination rates are reduced around the sex-determination locus  

When the segregation of LG 19 markers from the male and female parents was 

analyzed in both the Paxton and Priest crosses, large sex-specific differences were 

seen in the calculated genetic distances along the linkage group (Figure 2).  For 

example, the distance between Stn186 and Stn191 in the Paxton female meiotic map is 

25.7 cM, but only 6.4 cM in the Paxton male meiotic map (p<0.001).  A similar reduction 

in the male meiotic map is seen in this region in the Priest cross, where the 20.8 cM 

between Stn186 and Stn191 in the female meiotic map is reduced to a 1.1 cM interval in 

the male meiotic map (p<0.001).  This regional difference in recombination rate does 

not reflect a lower general rate of recombination in male meiosis, as the genetic 

distance between Stn303 and Stn186 in the Paxton cross is twice as large in the male 

meiotic map as in the female meiotic map (47.7 cM vs 27.3 cM; p<0.005).  These 

results suggest that recombination along this linkage group is suppressed, although not 

completely absent, in males around the sex-determination locus.  The presence of rare 

recombinants in this interval is surprising; therefore, the genotype and phenotype of all 

putative recombinants was re-confirmed.  Future work will reveal whether the observed 

suppression of recombination results from an inversion of this region in males relative to 

females or the accumulation of heterochromatin [15].  

In both the Priest and the Paxton crosses, three of the sex-linked microsatellite 

markers (Stn187, Stn191, Stn192) had null alleles segregating from the male parent 

(Supplementary Table 1).  Null alleles can either result from a deletion of the 

microsatellite locus or from polymorphisms in the primer sites used amplify the 

microsatellite.  The high rate of male-specific null alleles on this linkage group suggests 
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that the male-specific chromosome harbors significant differences from the homologous 

chromosome.  

Our genetic data provide evidence that threespine stickleback have a single 

chromosome region that determines male sex, that males are heteromorphic for 

markers in this region, and that there is a male-specific reduction in recombination 

around these sex-linked markers.  Based on these and the following results, we 

propose that threespine stickleback females have two X chromosomes and that males 

have an X and a Y chromosome.  

 

Sequence analysis near the sex-determination region  

To analyze the molecular region around the sex-determination locus, a BAC library 

made from a pool of DNA from sixty male and female sticklebacks [30] was screened 

with an Idh probe.  Twenty-one BACs were identified with this probe and were 

subsequently typed as being from the X or Y chromosome using the sex-specific 

polymorphism in the Idh 3’UTR.  Fifteen BACs were X-chromosome specific and six 

BACs were Y-chromosome specific.  These BACs were oriented relative to each other 

using PCR primers designed from BAC end sequences (data not shown).  Two X-

specific BACs (101E8 and 160O9) and two Y-specific BACs (169J23 and 119K16) that 

extended in opposite directions with the least amount of overlap were sequenced to 

completion. 

A combination of BLAST and GENSCAN analysis revealed there are homologs 

of five known genes in this region on both the X and Y-chromosomes: Semaphorin 4B 

(Sema4B), NADP-dependent isocitrate dehydrogenase (Idh), a zinc finger containing 
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gene (Znf), Ras protein-specific guanine nucleotide-releasing factor 1 (Rasgrf1), and a 

protein containing a Band 4.1 domain (Band 4.1) (Figure 3).  All five of these genes are 

found on human chromosome 15q24-26, suggesting that the distal end of LG 19 in 

sticklebacks has regions of conserved synteny with human chromosome 15.  The Idh 

gene does not map to the sex chromosome of Xiphophorus [41], suggesting that the 

chromosomal basis of sex determination has likely evolved independently in these 

different fish species.    

 

Poor sequence homology between the X and Y chromosome 

Suppression of recombination around a sex-determination locus with subsequent 

degeneration of sex-linked loci in the heterogametic sex is a hallmark of sex 

chromosomes [13].  Therefore, we expected to find poor homology between the X and 

Y-chromosome sequences.  Global alignment of the X-specific and Y-specific contigs 

revealed only 63.7% sequence identity over their length.  When the global alignment 

between the X and Y-chromosome sequences is visualized with VISTA, it is evident that 

this low sequence identity results from blocks of very high homology that are interrupted 

by large gaps of poor homology (Figure 3).  These gaps in homology are most likely to 

be due to insertions on the Y chromosome for four reasons.  First, the X and Y-

chromosome sequence contigs are anchored with the same end sequences, but the Y-

chromosome sequence contig is 87 kb longer.  Second, a dot plot comparing the X and 

Y-chromosome sequence contigs shows that there are multiple insertions in the Y-

chromosome sequence relative to the X-chromosome sequence (Figure 4a).  Third, dot 

plot analysis reveals that there are numerous local duplications on the Y-chromosome 



10 

(Figure 4c).  Fourth, many of these gaps in homology contain repetitive DNA elements, 

particularly novel stickleback specific repeats (Figure 3). 

 

Accumulation of transposable elements and duplications on the Y chromosome  

Accumulation of repetitive DNA and transposable elements is predicted to occur on a Y 

chromosome [13]. To determine whether previously characterized transposable 

elements exist on both the X and the Y-chromosomes, RepeatMasker was used on the 

X and Y-chromosome sequences.  This analysis showed that the Y chromosome has 

more repetitive elements than the homologous region on the X chromosome  (Table 1). 

The VISTA plot shows the positions of repetitive and transposable elements in the 

stickleback sex-determination region (Figure 3).  Dot plots were also used to compare 

the X-chromosome sequence to itself, and the Y-chromosome sequence to itself (Figure 

4b and c).  This analysis revealed that the Y chromosome also has multiple local 

duplications, while the X chromosome has none.  Many of these local duplications 

contain sequences that are not classified as known repetitive elements.  These 

sequences are not contained on either X chromosome or autosomal BACs that have 

been sequenced to completion, suggesting that a class of stickleback-specific repetitive 

elements has been amplified on the Y chromosome.  The Y-specific repeats account for 

a large number of the regions of discontinuity between the X and the Y-chromosome 

sequence contigs (Figure 3). 

Several other evolving Y-chromosome systems in plants (Silene latifolia, 

Marchantia polymorpha, Carica papaya) and animals (Drosophila miranda) have now 

been characterized, and many show similar patterns to the stickleback Y chromosome, 
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such as the presence of duplicated sequences and the accumulation of repetitive DNA 

[34-38].  Similarly, the sex-determination regions of fish such as Oryzias latipes and 

Xiphophorus maculatus are characterized by duplications and the presence of multiple 

retrotransposable elements, including species- and Y-specific repeats [39-40].  On the 

highly evolved human Y chromosome, approximately 44% of the euchromatin in the 

male specific region consists of ampliconic regions containing Y-specific repeats  [18]. 

 

Sequence divergence and the origin of the threespine stickleback Y chromosome 

The BAC sequence contig analysis revealed characteristic differences between the X 

and Y-specific alleles of the Idh and Znf genes.  To examine how these genes differ in 

other stickleback populations, we amplified and sequenced the 3’ UTR of the Idh gene 

and exon 2 of the Znf gene from five distinct geographic locations around the world 

(Figure 5).  We also sequenced these regions in two populations of Gasterosteus 

wheatlandi, a sister species to the threespine stickleback.  For each gene, PCR 

products were amplified from several male and female fish, and the PCR products were 

cloned and sequenced so that several X-specific clones and several Y-specific clones 

could be analyzed (Supplementary Table 2).   

All five of the G. aculeatus populations showed characteristic differences 

between the X and Y-specific sequences in the Idh and Znf genes.  In four of the five 

populations, including fish from both the Atlantic and Pacific Ocean, all of the sequence 

changes were identical to the sequence changes seen in the BAC contigs (derived from 

a Salmon River, BC population).  These changes include a 32-bp deletion and 11 single 

nucleotide differences in the 3’UTR of the Idh gene, and 9 synonymous nucleotide 
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differences in exon 2 of the Znf gene on the Y chromosome relative to the X 

chromosome.  No intra-population variability was seen in the X or Y-linked alleles of 

either gene in the relatively small number of individuals studied (Supplementary Table 

2).  

Threespine sticklebacks from the Japan Sea also showed characteristic 

sequence differences between X and Y-linked alleles in the Idh and Znf genes.  

However, some of these changes were unique to the Japan Sea population, consistent 

with the long period of isolation between Japan Sea sticklebacks and other 

Gasterosteus populations.  However, phylogenetic analysis showed very strong 

bootstrap support for both the clustering of Japan Sea X chromosome sequences with 

the X chromosome sequences of the other four populations and the clustering of Japan 

Sea Y chromosome sequences with the Y chromosome sequences of the other four 

populations (Figure 5).  These results suggest that the Y chromosome of Gasterosteus 

aculeatus predates the separation of the Japan Sea and other stickleback populations 

approximately 2 million years ago [41]. 

The sex-linked genes Idh and Znf were also sequenced in G. wheatlandi, a sister 

species thought to have diverged from G. aculeatus around 10 million years ago [21]. 

This analysis revealed no sex-specific polymorphisms in either gene in G. wheatlandi, 

suggesting that neither gene is linked to a sex-determination region in G. wheatlandi.  

As G. wheatlandi has a cytogenetically visible Y chromosome [22], our results suggest 

either that its XY chromosome system evolved independently from the XY system in G. 

aculeatus or that the linkage between the sex-determination region and the Idh and Znf 

genes has been broken up in G. wheatlandi.  Taken together with the Japan Sea data, 



13 

we believe that the threespine stickleback Y chromosome most likely arose after the 

split with G. wheatlandi 10 million years ago, but before the origin of the G. aculeatus 

subpopulations in the Japan Sea and Pacific/Atlantic Oceans 2 million years ago. 

 

Conclusions  

These studies show that a single major chromosome region in G. aculeatus controls sex 

determination.  This region has the properties of a nascent Y chromosome: 

heterozygosity in males, suppression of recombination, accumulation of repeat 

sequences, and substantial nucleotide divergence from the homologous region on the X 

chromosome.  The existing sequence contigs already provide an initial glimpse of the 

sequence changes associated with young sex chromosomes that are not yet visible 

different either at the light or electron microscope level [22-23].  Further extension of the 

X and Y sequence contigs should make it possible to identify the gene or genes 

responsible for sex determination in G. aculeatus, as well as linked genes that may be 

involved in male or female specific functions.  The stickleback system should also 

provide a useful vertebrate comparison to other evolving sex chromosome systems in 

plants and insects.  Furthermore, the existence of closely related Gasterosteid species 

with both XY (Gasterosteus wheatlandi) and ZW (Apeltes quadracus) sex determination 

systems [22] provides a unique opportunity to compare both the evolution of sex 

determination pathways and the origin of sex chromosomes in closely-related species 

that have diverged within the last 20 million years [21]. 
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Experimental Procedures 

Genetic crosses 

The Priest cross [29] and the Paxton cross [31-32] have been previously described.  A 

single F2 family (Family 4) from the Paxton cross that generated 385 F2 progeny was 

used in this analysis.  In both crosses, sex was determined by visual examination of the 

gonads. 

 

Genetic mapping 

Genotyping with microsatellites was performed as described previously [29].  One 

previously unpublished microsatellite (Stn 303) was used to genotype the Paxton cross.  

PCR genotyping for the Idh locus was performed using a forward primer (5’-

GGGACGAGCAAGATTTATTG-3’) and a reverse primer (5’- 

TTATCGTTAGCCAGGAGATGG-3’) designed from the 3’ UTR, with PCR conditions as 

previously described (Peichel et al 2001).  The Idh PCR products were visualized on a 

2% agarose gel in 1X TBE.  To map the Idh gene on the female meiotic map, forward 

primer (5’-AGCTCGTCCTCGTCCTTCC-3’) and reverse primer (5’-

GAGGTCTGGCAATTTGAAGC-3’) were used with previously described PCR conditions 

(Peichel et al. 2001), with the addition of 1 µCi [32P] dCTP per reaction, to amplify a 

150 bp product from the 5’ UTR of Idh.  Polymorphisms were detected using single 

strand conformation polymorphism analysis with the MDE gel solution (BioWhittaker 

Molecular Applications) and visualized with autoradiography.   

  To analyze female and male meiotic maps separately, F2 genotypes 

segregating from the F1 female and from the F1 male were entered into separate Map 
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Manager v2.6.6 [42] files.  Order of markers along the linkage group was determined by 

minimizing double recombination events.  Distance between markers was calculated in 

Map Manager using Backcross stats.  A chi-square contingency test was used to 

determine if observed differences in recombination rates were significant. 

  

BAC library screening 

High density filters from a BAC library prepared from the DNA of sixty (male and female) 

anadromous Salmon River (British Columbia) sticklebacks (CHORI-213, Children’s 

Hospital Oakland Research Institute) [30] were screened with radiolabeled overgo 

probes designed to the Idh 3’UTR using Overgo 1.02i (http://www.mouse-

genome.bcm.tmc.edu/webovergo/OvergoInput.asp) and Overgo Maker 

(http://www.genome.wustl.edu/tools/index.php?overgo=1).  Two overgo pairs were 

used: 5’-GGGACGAGCAAGATTTATTGGCAA-3’ and  5’-

GGACTGTCAAACGTATTTGCCCAAT-3’; 5’-GATAGTCGGAAAGACATGAGGTGG-3’ 

and 5’-GTTGAGAGCTGTGCTTCCACCTCA-3’.  BACs were genotyped as X 

chromosome or Y chromosome specific using the Idh 3’UTR primers as described 

above. 

 

BAC sequencing 

Two overlapping X chromosome BACs (101E8 and 160O9) and two overlapping Y 

chromosome BACs (169J23 and 119K16) were sequenced to completion.  BAC DNA 

was hydrodynamically sheared using a Hydroshear Instrument (GeneMachines), size 

selected (3-4 kb) and subcloned into the plasmid pIK96 (http://shgc.stanford.edu).  
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Randomly selected plasmid subclones were sequenced in both directions using 

universal primers and BigDye Terminator chemistry (Applied Biosystems) to an average 

sequence depth of 10x.  Sequences were then assembled and edited using the 

Phred/Phrap/Consed suite of programs [43-45].  Following manual inspection of the 

assembled sequences, finishing was performed both by resequencing plasmid 

subclones and by walking on plasmid subclones or the BAC clone using custom 

primers.  All finishing reactions were performed using dGTP BigDye Terminator 

chemistry (Applied Biosystems).  Finished clones contain no gaps and are estimated to 

contain less than one error per 100,000 bp. 

 

X and Y sequence contig assembly 

The region of sequence overlap between the two X chromosome BACs and between 

the two Y chromosome BACs were removed from one sequence to generate single 

sequence contigs for the X and Y chromosomes.  To facilitate subsequent analysis, the 

5’ and 3’ ends of the X and Y chromosome contigs were defined by homologous X-Y 

anchor sequences having >5000 nt of X-Y alignment and containing no known 

transposable elements. 

 

Global alignment 

A global pairwise alignment of the final X chromosome sequence contig and the final Y 

chromosome sequence contig was performed using VISTA (http://www-

gsd.lbl.gov/vista) with 95% stringency, 100 nt window size, and “fugu” repetitive element 

masking.  
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Gene identification 

To identify genes on the X and Y-specific contigs, nucleotide-nucleotide BLAST was 

performed against the non-redundant database in GenBank 

(http://www.ncbi.nlm.nih.gov/BLAST/). GENSCAN (http://genes.mit.eduGENSCAN.html) 

was also used on the X and Y-specific contigs, and a protein-protein BLAST was 

performed with all predicted proteins against the non-redundant database in GenBank.  

In order to identify the positions of the exons of the five genes in the alignment, 

representative genes that contain the complete coding sequence from other organisms 

were used.  The genes and accession numbers used are: human Semaphorin 4B 

(Sema4B; NM_020210.2), zebrafish C2H2 zinc finger protein (Znf; NM_199792.1), 

zebrafish NADP-dependent isocitrate dehydrogenase (Idh; NM_199564.1) human Ras 

protein-specific guanine nucleotide-releasing factor 1 (Rasgrf1; NM_002891.3), and rat 

Band 4.1 containing protein (Band 4.1; XM_230513.2).  Exon boundaries were identified 

using the program sim4 [46] to align the mRNA sequences to the final Y contig.  The 

sim4 report was used to annotate the VISTA plot with exon positions. 

 

Repeat analysis 

To identify known repetitive elements in the X and Y-chromosome contigs, the 

sequences were analyzed with RepeatMasker (http://www.repeatmasker.org) using the 

fugu library.  To identify the internal duplications on the Y-chromosome contig, the 

RepeatMasked Y-chromosome sequence contig was BLASTed against itself.  All multi-

copy sequences with no homology to known repetitive elements and greater than 200 

bp in length were then mapped onto the VISTA plot. 
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Dot plot analysis 

The final X and Y sequence contigs were subjected to analysis by ‘compare’ and 

visualized using ‘dotplot’ (Wisconsin package v.10.2-UNIX).  The window size was 100 

nt and the stringency was set at 95%.  

 

Population survey 

The Idh 3’ UTR was amplified from several individuals from five populations of G. 

aculeatus and two populations of G. wheatlandi using the primers and conditions 

described above.  An 876 bp product containing exons 2 and 3 of the G. aculeatus Znf 

gene was amplified using the forward primer (5’-GAGGAGGAATTGGAAGAGGC-3’) 

and the reverse primer (5’-GATCGGTACCTTAAGGGCG-3’).  A 547 bp product 

containing exon 2 of the G. wheatlandi Znf gene was amplified using the forward primer 

(5’-CGCTGGAAGTGCCGCATGTG-3’) and the reverse primer (5’-

GGATCTGGACGAACTCCATGC-3’).  PCR conditions were as described previously  

(Peichel et al. 2001), with the addition of dimethyl sulfoxide (DMSO) to the reaction mix 

at a final concentration of 10%.  PCR products were cloned into TA cloning vectors 

(Invitrogen) and multiple clones per individual were sequenced using the M13 forward 

and reverse primers.  See supplementary table 2 for collection sites, number of 

individuals used, and total number of clones sequenced. 
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Phylogenetic analysis 

A total of 545 bp from the Znf gene and 271 bp from the Idh gene were combined into 

an 816 bp sequence and used for this analysis.  The male-specific deletion in Idh was 

represented by a single bp.  Phylogenetic analysis was conducted with MEGA version 

2.1 (http://www.megasoftware.net/). Pairwise distances were estimated using the 

Tajima-Nei distance method [47], but similar results were obtained using the Kimura 2-

parameter, Tamura 3-parameter, Tamura-Nei or Jukes-Cantor pairwise distance 

methods.  The neighbor-joining method [48] and bootstrap analysis with 1000 replicates 

was used to generate a linearized tree.  

 

Supplemental Data 

Supplemental tables are available with this article online at: 
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(119K16).  The accession number for Stn303 is BV154586. 
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Figure legends 

 
Figure 1. The sex-determination locus maps near the Idh gene in threespine 

sticklebacks. 

(A) Ethidium bromide stained agarose gel showing the pattern of the sex-specific 

polymorphism in the 3’UTR of the Idh gene in the grandparents and parents of both the 

Priest cross [37] and the Paxton cross [39-40].  The band at 302 bp is from the X 

chromosome and the band at 271 bp is from the Y chromosome.  Abbreviations: PrB1, 

Priest benthic female 1; PrL1, Priest limnetic male 1; PrF1, Priest F1 male 1; PrB2, 

Priest wild caught benthic female 1; JM, Japanese Pacific marine female; PB, Paxton 

benthic male; F1F4, F1 female parent of family 4; F1M4, F1 male parent of family 4; 

NO, no DNA control.  (B) Comparison of Idh genotype with phenotypic sex.  Of 66 

animals genotyped for Idh and phenotyped for sex in the Priest cross, one animal is 

recombinant.  Of 328 animals genotyped for Idh and phenotyped for sex in the Paxton 

cross, two animals are recombinant. 

 

Figure 2. Male and female recombination rates differ near SEX. 

Female and male meiotic maps of LG 19 in the Paxton and Priest crosses are shown.  

Distance in centimorgans (cM) is indicated along each map.  Microsatellite markers are 

designated with a prefix of Stn, followed by a number.  Marker Stn303 could not be 

scored in the Priest cross, accounting for the difference in total map length between the 

two crosses.  Markers that do not recombine with each other are listed on the same line.  

The sex-determination locus (SEX) is located at the end of LG 19 in both crosses. 
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Figure 3. Poor sequence homology between X and Y-chromosome sequence 

contigs.   

VISTA plot comparing 250 kb of sequence from the X and Y-chromosome sequence 

contigs.  Shaded pink areas indicate regions of high sequence homology.  Purple boxes 

indicate exons of putative genes, and the arrows indicate the direction of transcription.  

Sema4B is Semaphorin 4B, Znf is a zinc finger-containing gene, Idh is NADP-

dependent isocitrate dehydrogenase, Rasgrf1 is Ras protein-specific guanine 

nucleotide-releasing factor 1, and Band 4.1 is a protein containing a Band 4.1 domain.  

Red boxes indicate the position of long interspersed nuclear elements (LINEs), green 

boxes indicate the position of short interspersed nuclear elements (SINEs), magenta 

boxes indicate the position of LTR-containing retroviral elements, orange boxes indicate 

the position of DNA mobile elements, and yellow boxes indicate position of other 

repeats, such as simple sequence and low complexity repeats.  The blue boxes indicate 

the position of stickleback Y-chromosome specific repeats.  The entire alignment used 

to generate Table 1 is not shown.  Therefore, the numbers of repeats shown is a subset 

of those listed in Table 1.  For this analysis, a 100 nt window size and 95% stringency 

were used. 

 

Figure 4. The Y chromosome contains many internal repeats. 

Dot plots comparing (A) the X-chromosome sequence contig to the Y-chromosome 

sequence contig; (B) the X-chromosome sequence contig to itself; (C) and the Y-

chromosome sequence contig to itself.  (A) The broken lines in the X-Y comparison 

indicate that there are multiple insertions and a single major deletion in the Y-
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chromosome sequence relative to the X-chromosome sequence.  (B) The single 

diagonal line in the X-X comparison shows that the sequence aligns perfectly with itself 

over its entire length.  The absence of other lines in the dot plot suggests that there are 

no internally repeated sequences in this region of the X chromosome.  (C) The single 

diagonal line in the Y-Y comparison shows that the sequence aligns over its entire 

length.  However, the smaller lines above the diagonal indicate that there are multiple 

local duplications contained in this region of the Y chromosome. For this analysis, a 100 

nt window size and 95% stringency were used. 

 

Figure 5. X and Y chromosome sequences form two different clusters in a 

phylogenetic tree. 

(A) Map of the distribution of populations used for phylogenetic analysis, modified from 

[29] by permission of Oxford University Press. (B) A linearized tree was generated using 

the neighbor-joining method.  Bootstrap values are shown for each branch.  The scale 

below the tree represents the averaged pairwise distances between populations.  

Abbreviations are Japan Pacific marine (JP), Japan Sea marine (JM), Little Campbell 

River (LC), Santa Clara River (SC), and White marines (WH).  Details on populations 

and collections are given in Supplementary Table 2. 
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Table 1. Repeat content in X and Y chromosome contigs  
 
 

X chromosome sequence 
(229012 bp) 

Y chromosome sequence 
(316654 bp) 

 
Repeat type 

 
Number 

 
Length (bp) 

% of total 
sequence 

 
Number 

 
Length (bp) 

% of total   
sequence  

SINE 0 0 0 4 210 0.07 
LINE 0 0 0 13 12070 3.81 
LTR 0 0 0 1 623 0.20 
DNA 2 97 0.04 3 498 0.16 

Simple sequence 47 1884 0.82 60 3796 1.20 
Total 49 1981 0.86 81 17197 5.44 

Abbreviations: SINE, short interspersed nuclear element; LINE, long interspersed nuclear element; LTR, 
LTR-containing retroviral element; DNA, DNA-containing mobile element. 
 

Supplementary Table 1. Allele sizes of sex-linked microsatellites 
 Priest cross Paxton cross 

Marker PrB2 F PrF1 M F1 F4 F1M4 
Stn303 NT NT 190, 204 192, 204 
Stn185 162,168 188, 175 171, 185 154, 152 
Stn186 140, 162 154, 177 153, 149 159, 167 
Stn187 201, 217 191, null 174, 231 174, null 
Stn188 172, 174 174, 164 179, 179 179, 164 
Stn193 130, 136 139, 96 112, 129 112, 96 
Stn194 83, 120 97, 112 93, 95 85, 110 
Stn191 224, 228 228, null 220, 230 220, null 
Stn192 205, 205 213, null 200, 212 200, null 

The Y chromosome-specific allele in highlighted in bold.  In the Priest cross, the Y chromosome is 
derived from the Priest limnetic grandfather.  In the Paxton cross, the Y chromosome is derived 
from the Paxton benthic grandfather. NT, not tested. Null, no amplification product detected. 
 
 
Supplementary Table 2. Location of populations and number of DNA clones sequenced for phylogenetic analysis 

 Idh Znf 
 

Population 
 

Location 
 

Collectors 
# of 

DNAs 
# of X 
clones 

# of Y 
clones 

# of 
DNAs 

# of X 
clones 

# of Y 
clones 

Japan Sea 
marine (JS) 

Akkeshi Harbor, 
Hokkaido, Japan 

CLP, Jun Kitano 
(Seiichi Mori) 

1F 
1M 

5 1 2M 3 7 

Japan Pacific 
marine (JP) 

Akkeshi Harbor, 
Hokkaido, Japan 

CLP, Jun Kitano  
(Seiichi Mori) 

1F 
1M 

4 2 2M 6 3 

Little Campbell 
River (LC) 

White Rock, BC  
Canada 

CLP 1F 
3M 

12 11 3M 11 7 

Santa Clara River 
(SC)  

Soledad Canyon, 
California USA 

CLP 3M 8 7 3M 2 7 

“White” marine 
(WH) 

Nova Scotia,  
Canada 

Janice MacDonald 1F 
2M 

8 3 3M 6 3 

G. wheatlandi  Wells, Maine  
USA 

Bill Rowland 1F 
1M 

8 0 1F 
1M 

8 0 

G. wheatlandi  Baie de L’Isle-
Verte, Quebec 
Canada 

Melissa Lieutenant-
Gosselin (Louis 
Bernatchez) 

1F 
1M 

8 0 1F 
1M 

8 0 

Abbreviations: F, female; M, male.  The person listed in parenthesis kindly granted permission and provided 
assistance for sample collection. 
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