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University of Washington 

Abstract 

THE EVOLUTION OF SEX CHROMOSOMES AND SEX DETERMINATION 

MECHANISMS IN STICKLEBACK FISHES (GASTEROSTEIDAE) 

James Ralph Urton 

Chair of the Supervisory Committee: 

Dr. Catherine L. Peichel 

Associate Member, Human Biology Division; Fred Hutchinson Cancer Research 

Center 

Affiliate Associate Professor, Department of Biology; University of Washington 

In many vertebrate species, a bipotential gonad develops into either testes or 

ovaries based on the action of an initial sex determination signal. Sex determination 

signals vary widely among species and can be genetic or environmental signals. 

Closely related species can have different sex determination mechanisms. Among 

species with genetic sex determination mechanisms, such rapid turnover is easily 

seen in species with independently evolved sex chromosome systems. However, 

the mechanisms by which sex chromosome systems and sex determination 

mechanisms turnover are poorly understood. 

Within the stickleback fish family (Gasterosteidae), at least five sex chromosome 

systems arose in the past 40 million years. However, we do not know the 

evolutionary relationships among these sex chromosome systems, nor do we know 

if the same sex determination gene is found in different stickleback sex chromosome 

systems. To help understand the evolutionary relationships among the stickleback 

sex chromosome systems, I undertook genetic and cytogenetic screens to map the 

ZZ-ZW sex chromosome system of the fourspine stickleback, Ape/tes quadracus, 



relative to the threespine stickleback, Gasterosteus aculeatus. I discovered that the 

A. quadracus ZZ-ZW sex chromosomes arose independently of the other stickleback 

sex chromosome systems. I also discovered one A. quadracus population with no 

visible sex chromosomes. To address whether sticklebacks share the same sex 

determination gene, we first wish to identify the sex determination gene in G. 

aculeatus, which has a XX-XV sex chromosome system. Thus, I designed and 

executed a high-throughput sequencing transcriptome screen and identified 

hundreds of genes that are differentially expressed between the sexes during the 

early stages of gonadal differentiation. These genes will shed light on how sexual 

differentiation pathways have evolved in the stickleback family and assist in the 

continued search for the G. acu/eatus sex determination gene. In addition, my 

screen confirmed the lack of a global dosage compensation mechanism for X 

chromosome genes in this species. These results will spawn future studies to 

understand how sex chromosomes arose in this family, how the gene content of sex 

chromosomes can change over time, and how dosage tolerance evolves in a 

complex vertebrate genome. 
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1 

CHAPTER ONE 

Introduction to the Evolution of Sex Determination Mechanisms, Sexual 

Differentiation Pathways, and Sex Chromosomes 

SUMMARY 

In vertebrates, a sex determination mechanism acts to differentiate an initially 

bipotential gonad primordium into either testes or ovaries. Testes and ovaries, in 

turn, govern the development of mature male and female forms. Though many 

downstream genes in sexual differentiation pathways are conserved, even among 

vertebrates and invertebrates, the upstream sex determination mechanism can vary 

even between closely related species. Thus, sex determination mechanisms can 

evolve rapidly, and can even transition between genetic and environmental 

mechanisms. Transitions between genetic sex determination mechanisms can also 

lead to sex chromosome diversity, both within and between species. This type of 

sex chromosome diversity is seen among the stickleback fishes (Gasterosteidae), 

where several sex chromosome systems have evolved independently within the last 

40 million years. In this family, there are XX-XY and ZZ-ZW sex chromosome 

systems, as well as two sex chromosome systems derived from independent Y

autosome fusions. However, we do not know how many times sex chromosomes 

have arisen independently in this family. In addition, we do not know if different 

stickleback sex chromosome systems house the same sex determination gene. My 

research goals, which are described in detail in Chapters 2, 3, and 4, address these 

questions. 
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SEX DETERMINATION AND SEXUAL DIFFERENTIATION 

Sex determination and sexual differentiation are the developmental processes 

by which females and males develop. Among vertebrates, a bipotential gonad 

develops into either testes or ovaries based on different genetic and environmental 

instructions (Nakamura, 1989). Signals from the gonad (testes or ovaries) govern 

the development of mature male or female forms. For the purposes of this 

dissertation, sex determination is defined as the mechanism that initiates the sex

specific development of an immature gonad into a testis or an ovary. Sexual 

differentiation is the process by which sex-specific differences in both the gonad and 

somatic tissues develop. The consequences of sex determination and sexual 

differentiation are far-reaching, not only governing gametogenesis but also the 

extensive sexual dimorphism in morphological, physiological, and behavioral traits 

observed in many species. However, these consequences begin with the sex 

determination mechanism, which acts to promote the gonad development and 

sexual differentiation process toward the development of one sex over the other. 

I deliberately separate "sex determination" (a precise, narrow developmental 

event) from "sexual differentiation" (the broad downstream consequences of the sex 

determination mechanism) to ease in illustrating how evolution has shaped these 

processes. 

The Principle of "Masters Change, Slaves Remain" 

Sex determination mechanisms are not conserved among animals. Sex 

determination mechanisms can be a single gene (simple genetic sex determination), 

multiple genes (polygenic sex determination), an environmental signal, or a 

"polyfactorial" sex determination mechanism (a mixture of genetic and environmental 

cues) (Bull, 1983). Vertebrates provide a particularly compelling group to study 

these variable mechanisms. For example, in some vertebrate lineages, such as 

marsupial and placental mammals, a simple genetic sex determination mechanism 

has persisted for over 100 million years (Veyrunes et al., 2008). Although birds have 

a different simple genetic sex determination mechanism than mammals, it is also 

quite stable (Handley et al., 2004). However, both genetic and environmental sex 
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determination mechanisms (and everything in between) have been observed in 

many other vertebrate lineages such as fish, amphibians, and reptiles. Furthermore, 

different sex determination mechanisms can be found in closely related species in 

these groups. This is exemplified by fish in the genus Oryzias; even closely related 

species separated by only a few million years have different sex determination 

mechanisms (Matsuda, 2005; Takehana et al., 2007; Tanaka et al., 2007). These 

observations have led to the theory that sex determination mechanisms can turnover 

rapidly, leading to transitions between different mechanisms (whether they be 

genetic, environmental, or both). 

In contrast to the variability of sex determination mechanisms, gonad fate and 

sexual differentiation appear to be governed by a conserved set of genes and gene 

families. For some gene families, such as the Ooublesex-MA83 (OM) family 

(Raymond et al., 1998; Volff et al., 2003), this conservation even extends across 

invertebrate and vertebrate species. Other conserved genes and gene families 

include the SOX (SRY Qn the X) family in vertebrates (Koopman, 2005) and the 

transformer family in dipteran insects (Schutt and Nothiger, 2000; Graham et aI., 

2003; Pomiankowski et aI., 2004). The molecular roles for these conserved genes 

vary from transcriptional regulators (OM and SOX genes) to hormone synthesis, 

such as the conserved vertebrate aromatase gene Cyp19 (Callard et aI., 2001). 

This downstream stability of sexual differentiation pathways stands in stark 

contrast to the rapid turnover of the signals initiating sexual determination (Marin and 

Baker, 1998; Schutt and Nothiger, 2000; Haag and Ooty, 2005). This observation 

was once neatly summarized with the phrase, "Masters change, slaves remain" 

(Graham et aI., 2003). Behind this credo lie a number of outstanding questions 

regarding how evolutionary pressures could act so differently in sex determination 

and sexual differentiation (Wilkins, 1995). The goal of understanding how 

evolutionary pressures shape sex determination and differentiation pathways is 

made even more difficult by the effects of genetic sex determination mechanisms on 

genome architecture in the form of degenerate sex chromosomes. 
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ORIGIN AND EVOLUTION OF SEX CHROMOSOMES 

Sex Chromosomes and Genetic Sex Determination 

In species with a simple sex determination mechanism, a sex determination 

gene initiates the downstream sexual differentiation pathway to promote the 

development of one sex over the other. For example, in most mammalian species, 

the male-determining gene SRY promotes gonadal differentiation into testes (Berta 

et al., 1990; Koopman et al., 1990; Koopman et al., 1991). Sex determination genes 

like SRY reside on one member of a pair of sex chromosomes. Sex chromosome 

pairs differ between the sexes in a given species. One sex carries one pair of two 

identical sex chromosomes, while the other sex carries a single copy of two different 

sex chromosomes. A sex chromosome system is XX-XV (male heterogametic) 

when females carry two identical sex chromosomes (X and X), and males have a 

single X chromosome and a Y chromosome. In contrast, for species with ZZ-ZW 

sex chromosomes (female heterogametic), males have two identical sex 

chromosomes (Z and Z), and females have a single Z chromosome and a W 

chromosome. The Y chromosome is male-limited, the W chromosome is female

limited, and each is present in a hemizygous state (Bull, 1983). At a minimum, the X 

and Y (or Z and W) differ by the presence or absence of a sex determination gene. 

For example, the sex determination gene in birds, DMRT1, is found on the Z 

chromosome, but is absent from the W (Smith et al., 2009). Thus, in this case, the 

sex determination gene acts primarily through a dosage effect. Like in the 

mammalian case of SRY, in the medaka fish Oryzias latipes, the male sex 

determination gene DMY is only found on the Y chromosome (Matsuda et al., 2002; 

Nanda et al., 2002). The example of medaka is particularly instructive, because the 

X and Y chromosomes in this species have identical gene content over their entire 

length, save for a relatively small 258kbp region unique to the Y chromosome that 

contains only a single protein-coding gene, the sex determination gene OMY (Kondo 

et aI., 2006). Thus, the medaka Y chromosome could be thought of as a "minimalist" 

design, since the region of the Y chromosome that is unique to males contains the 

minimum number of genes required for a sex chromosome: a single sex 

determination gene. 
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Suppression of Recombination and Sex Chromosome Degeneration 

Many model sex chromosome systems do not merely differ by the presence 

or absence of the sex determination gene, and the sex chromosome pair can be 

distinguished using cytogenetic methods. Such heteromorphic sex chromosomes 

have evolved independently from autosomes in animals, plants, and fungi and share 

a number of characteristics (Fraser and Heitman, 2005). Typically, the X and Y 

chromosomes do not recombine over part (if not all) of their length (Bergero and 

Charlesworth, 2009). Since the Y chromosome is present in a hemizygous state, 

the non-recombining region of the Y is the male-specific region (and the 

corresponding region on a W chromosome is the female-specific region). The region 

of the Y chromosome that still recombines with the X during meiosis is the "pseudo

autosomal region". For the remainder of this section, when describing the features 

of XY and ZW sex chromosome pairs, I will describe only X and Y sex 

chromosomes. However, similar features are found on Z and W sex chromosome 

pairs. 

Recombination suppression between X and Y sex chromosomes may initially 

encompass a small area and spread gradually through suppressive chromatin 

remodeling or chromosome rearrangements. Alternatively, large chromosome 

rearrangement events, such as an inversion, can instantaneously establish a male

specific region encompassing many genes (Lahn and Page, 1999). While the sex 

determination gene lies within the non-recombining region of the Y or X 

chromosome, the presence of the sex determination gene alone is not thought to be 

sufficient to select for a loss of recombination and a spread of recombination 

suppression. Instead, the main theory to explain the spread of recombination 

suppression proposes an important role for sexually-antagonistic loci in this process 

(Rice, 1987; Charlesworth et 8/., 2005). By this theory, a mutation can arise with a 

sexually-antagonistic effect (for example, a mutation beneficial to males but 

detrimental to females). If this new male-beneficial/female-detrimentallocus 

becomes closely linked to a male sex determination locus on a Y chromosome, 

selection will act to sequester the male-beneficial allele with the male-determination 
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locus through the suppression of recombination on the Y (Rice, 1987; Charlesworth 

et al., 2005). Once the male-specific region of a Y chromosome has been 

established, other genes with sex-specific effects can transpose to the Y 

chromosome (Charlesworth et al., 2005; Bachtrog, 2006). 

In addition to accumulating genes with sex-specific effects, the male-specific 

region of the Y chromosome also begins to suffer some of the detrimental effects of 

the loss of recombination. These effects include the inability to repair mutations 

through recombination, so genes in the male-specific region of the Y gradually 

diverge in sequence from their X chromosome homologs (Bachtrog, 2006). In 

addition, large-scale rearrangements can occur, leading to deletions and inversions. 

Inversions themselves may help suppress recombination between the X and Y 

(Lahn and Page, 1999) and help expand the male-specific region if those inversions 

include sections of the pseudo-autosomal region (Charlesworth et a/. , 2005). In 

addition, transposable elements often accumulate in the male-specific region of the 

Y chromosome (Liu et a/., 2004; Peichel et al., 2004; Kondo et a/. , 2006; Bachtrog et 

a/. , 2008; Marais et a/. , 2008). Possibly to silence these invasive mobile genetic 

elements, chromatin modifications can also transcriptionally silence sections of the 

male-specific region that have large numbers of invasive genetic elements (Bachtrog 

et aI., 2008). However, transposable elements can also be recruited to modify 

expression of a gene on the sex chromosomes, possibly affecting expression of the 

sex determination gene itself (Martin et al., 2009; Herpin et al., 2010). 

As formerly-autosomal genes on the Y chromosome are lost due to mutation 

or deletion, a gene dosage imbalance between the sexes may develop for genes 

that have been lost on the Y and retained on the X. As Y degeneration spreads, the 

dosage imbalance may encompass most genes on the X chromosome. This dosage 

imbalance may persist with no selection for a mechanism to equalize X gene dosage 

between the sexes (dosage tolerance). However, the dosage imbalance may also 

select for the evolution of either a global or a gene-by-gene mechanism to equalize 

X gene dosage between the sexes (Charlesworth, 1978). In mammals, for example, 

this dosage compensation mechanism takes the form of global transcriptional 

inactivation of one X chromosome copy in females (Lucchesi et a/., 2005). In the 
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fruit fly Orosophila melanogaster, dosage compensation occurs via 

hypertranscription of the single X chromosome in males (Lucchesi et aI., 2005). 

However, there are several species with degenerate sex chromosomes that have no 

reported global dosage compensation mechanism, including the chicken, the 

trematode Schistosoma mansoni, the silkworm moth, and the threespine stickleback 

(Gasterosteus acu/eatus) (Ellegren et al., 2007; Leder et al., 2010; Vicoso and 

Bachtrog, 2011; Walters and Hardcastle, 2011). 

Degeneration of the male-specific region on the Y chromosome may begin 

rapidly following the cessation of recombination with the X chromosome. However, 

selection does likely preserve sections of the male-specific region. The sex 

determination gene, for example, must remain functional. In addition, sex 

chromosomes can fuse with autosomes, adding new sections to the male-specific 

region of the Y chromosome. These V-autosome fusion events may even help bring 

new sexually-antagonistic loci onto the sex chromosomes (Charlesworth and 

Charlesworth, 1980). 

Sex chromosomes are dynamic environments within the genome. The sex

specific regions of the Y or W can diverge rapidly between lineages. Thus, as 

populations diverge and speciation events occur, even closely related species can 

have sex chromosomes that, thought they were inherited from a common ancestor, 

differ in size, appearance, the size of the sex-specific region, and gene content 

(Paar et aI., 2011). 

TRANSITIONS BETWEEN SEX DETERMINATION MECHANISMS 

The Emergence of New Sex Determination Genes 

New sex determination genes can evolve anywhere in the genome, 

regardless of the existence of a previous sex determination locus on a sex 

chromosome. The mechanisms by which new sex determination genes arise are 

not known. However, several theories point to sexually-antagonistic loci as a 

potential catalyst for the emergence of new sex determination genes. By these 

theories, an autosomal gene with fitness benefits favoring one sex over the other 

can select for a new sex determination gene arising closely linked to it (van Doorn 
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and Kirkpatrick, 2007). The new sex determination gene (and its closely-linked gene 

under sexually-antagonistic selection) would establish a new sex chromosome 

system, displacing the previous sex determination gene. The degree and direction 

of the initial sexually-antagonistic selection can even cause transitions between male 

and female heterogametic sex chromosome systems (van Doorn and Kirkpatrick, 

2010). 

We can only verify these theoretical models by identifying sex determination 

genes in a variety of closely-related species. However, few animal sex 

determination genes are known. Many of these genes are either transcription 

factors (such as the mammalian sex determination gene SRYand the bird sex 

determination gene DMRT1) or RNA splicing factors (such as Sex-lethal in 

Drosophila melanogaster) (Volff et aI., 2003; DiNapoli and Capel, 2008; Sekido and 

Lovell-Badge, 2009). Interestingly, the known vertebrate sex determination genes 

come from conserved genes and gene families of downstream sexual differentiation 

developmental pathways. These genes include the SOX family gene SRYon the Y 

chromosome of most mammalian species, and DM family genes such as DMRT1 on 

the Z chromosome of birds, DMYon the Y chromosome of medaka, and OM-Won 

the W chromosome of the African clawed frog Xenopus laevis (Matsuda et al., 2002; 

Nanda et al., 2002; Volff et al., 2003; Okada et al., 2009; Smith et al., 2009; 

Yoshimoto et al., 2010). 

Transitions Between Genetic and Environmental Mechanisms 

The loss of a sex determination gene can lead to sex chromosome turnover, 

where the sex chromosomes themselves are no longer maintained by selection and 

ultimately lost. A new sex determination mechanism can assume its role at the top 

of the sex determination and sexual differentiation hierarchy. If this new mechanism 

is a sex determination gene, then a new sex chromosome system is established, as 

discussed previously (van Doorn and Kirkpatrick, 2007). But, this new mechanism 

need not be genetic. Transitions between different genetic and environmental 

mechanisms have been implied based on the distribution of sex determination 

mechanisms in different animal lineages. Among reptiles, for example, many 
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species have either sex chromosomes or an environmental sex determination 

mechanism such as temperature (Modi and Crews, 2005). In some lizard species, 

zz-zw sex chromosomes and temperature-based sex determination coexist (Quinn 

et al., 2007; Ezaz et al., 2009). However, the selective pressures and mechanisms 

governing the transition between environmental and genetic sex determination 

mechanisms are poorly understood. In reptiles, recent theories have examined 

whether sexual selection and the presence of sexually dimorphic traits might 

predispose a species to developing a genetic or environmental sex determination 

mechanism (Valenzuela, 2009). It has been suggested that these selective 

pressures may trigger transitions between environmental and genetic sex 

determination (Valenzuela, 2009). 

Several experimental approaches can help identify transitions between sex 

determination mechanisms. For example, if a species has a known sex 

determination gene, or genetic markers closely linked to the sex determination locus 

then, closely related species can be tested for the presence of those SEX-linked 

genetic markers or the sex determination gene (Kondo et aI., 2003; Matsuda et al., 

2003; Takehana et al., 2007; Tanaka et aI., 2007). However, fewer methods exist to 

identify the transitions between genetic and environmental sex determination 

mechanisms. These transitions likely require knowledge of the ecology and 

behavior of a species to understand what types of environmental cues could 

supplant an established genetic sex determination mechanism. 

The diversity of sex determination mechanisms and sex chromosome 

systems reported in the literature, including between closely related species, raises 

a number of questions concerning how they arise and evolve. Many of these 

questions are difficult to address in mammals due to the stability of the sex 

determination mechanism and the advanced stage of sex chromosome 

degeneration. To answer these questions, we must turn to model systems where 

closely related species have divergent sex determination and sex chromosome 

systems. 
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STICKLEBACK FISHES AS A MODEL SYSTEM FOR THE EVOLUTION OF SEX 

CHROMOSOMES 

Sex Chromosome Diversity in the Sticklebacks 

Sticklebacks are a family of small teleost fish, inhabiting freshwater and 

marine temperate habitats across the northern hemisphere (Wootton, 1976). All six 

species are classified in five genera within the family Gasterosteidae (Figure 1.1). 

For over a century, generations of ecologists and ethologists have studied 

stickleback species and populations, documenting numerous differences in 

behavioral and morphological traits both between and within species (Wootton, 

1976; Bell and Foster, 1994). Historically, these ecological, morphological, and 

behavioral differences within and between stickleback species have been difficult to 

place in a larger evolutionary context due to disputed phylogenies within this family 

(Mattern, 2004). However, a recent phylogeny has clarified the evolutionary 

relationships among sticklebacks as this family has evolved over the past 40 million 

years (Kawahara et al., 2009). 

Stickleback evolution has not been confined to morphological and behavioral 

traits. Several studies have shown that sticklebacks differ in some aspects of 

genome organization. Karyotypes among stickleback species differ in both diploid 

number (2n) and chromosome morphology (Figure 1.1) (Chen and Reisman, 1970). 

This divergence is especially true for sex chromosomes in sticklebacks. At least five 

sex chromosome systems have been described in sticklebacks, and in four of these 

systems, genetic markers linked to a sex determination locus have been identified 

(SEX-linked markers; see Figure 1.1) (Chen and Reisman, 1970; Peichel et al., 

2004; Ocalewicz et al., 2008; Kitano et al., 2009; Ross et al., 2009; Shapiro et al., 

2009). To better illustrate the evolutionary relationships among these sex 

chromosome systems, chromosome pairs in all stickleback species have been 

numbered relative to the genome of the threespine stickleback, Gasterosteus 

aculeatus (Figure 1.1; Figure 1.2) (peichel et al., 2001). 

The three sex chromosome systems in the genus Gasterosteus likely arose 

from a common ancestral sex chromosome system (Figure 1.1). In most 

populations of G. acufeatus (Figure 1.2), chromosome 19 (Chr19) is an XX-XY sex 
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chromosome system (peichel et aI., 2004; Ross and Peichel, 2008). This sex 

chromosome system is visible (heteromorphic), since the X and Yare 

morphologically distinguishable from one another (Ross and Peichel, 2008). At least 

3 inversions and one large deletion have occurred on the male-specific region of the 

G. aculeatus Y chromosome since it stopped recombining with the X (Ross and 

Peichel, 2008). The male-specific region of the Y chromosome shows evidence for 

the invasion of transposable elements, and sequence divergence has proceeded to 

a point where distinct X and Y alleles for some genes can be detected (Withler et aI., 

1986; Peichel et al., 2004). However, G. aculeatus from the Sea of Japan have an 

X1X1X2X2-X1X2Y sex chromosome system, which likely arose from a fusion between 

the ancestral Y chromosome (Chr19) and a previously autosomal copy of Chr09 

(Kitano et al., 2009). A separate V-autosome fusion between the ancestral Yand 

Chr12 likely gave rise to the X1X1X2X2-X1X2 Y sex chromosome system found in the 

black-spotted stickleback, G. wheatlandi (Ross et al., 2009). 

In addition to the three sex chromosome systems in the genus Gasterosteus, 

two other species in the stickleback family have heteromorphic sex chromosomes. 

In ninespine sticklebacks, Pungitius pungitius, Chr12 is a XX-XV sex chromosome 

system (Ocalewicz et aI., 2008; Shapiro et aI., 2009). Cytogenetic evidence 

suggests that Chr12 has twice evolved as a sex chromosome system in this family; 

i.e. in the P. pungitius sex chromosome pair and the G. wheatlandi X1X1X2X2-X1X2Y 

sex chromosome system (Ross et aI., 2009). No heteromorphic sex chromosomes 

have been reported for the closest extant relative of P. pungitius, the brook 

stickleback (Cufaea inconstans) (Figure 1.3). Fourspine sticklebacks (Apeltes 

quadracus) have a ZZ-ZW sex chromosome pair, but no genetic markers from this 

sex chromosome system have been reported (Figure 1.4) (Chen and Reisman, 

1970; Ross et aI., 2009). Finally, no studies have yet searched for evidence of sex 

chromosomes in the fifteenspine stickleback, Spinachia spinachia. 

Genetic and Genomic Studies of the Stickleback Sex Chromosome Systems 

Though much data have been gathered regarding sex chromosome diversity 

in sticklebacks, very little is currently known about the gene content of these sex 
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chromosome systems. No sex determination gene has been found in sticklebacks. 

Thus, it is not known whether each sex chromosome system has a unique sex 

determination gene or if a sex determination locus has transposed to different sex 

chromosome pairs. 

In addition to the sex chromosome diversity and rapid sex chromosome 

turnover in this family, a number of genetic and genomic tools have been developed 

for sticklebacks. These tools include the complete G. aculeatus female (XX) 

genome (BROAD S1 assembly, February 2006, available at 

http://www.ensembl.org/Gasterosteus_aculeatus/index.html). as well as the G. 

aculeatus bacterial artificial chromosome (BAC) libraries (Kingsley et aI., 2004). In 

addition, the complete sequence of the G. aculeatus Y chromosome should be 

available within the next year. Genome-wide microsatellite markers have been 

developed for both G. aculeatus and P. pungitius (peichel et a/., 2001; Shapiro et aI., 

2009). There are also protocols to introduce transgenic constructs into sticklebacks 

(Hoseman et aI., 2004; Chan et a/., 2010). Finally, a number of cytogenetic 

protocols, such as fluorescence in situ hybridization, have been adapted for 

sticklebacks (Ross and Peichel, 2008; Ross et al., 2009). 

GOALS OF THIS DISSERTATION 

This dissertation summarizes several studies regarding the evolution of sex 

chromosome systems in the stickleback family, as well as the developmental and 

genetic regulation of sex determination and sexual differentiation in sticklebacks. 

These investigations were divided into two broad research questions, and the major 

findings of these studies are described in the next three chapters of this dissertation. 

How Many Sex Chromosome Systems Have Evolved in the Stickleback 

Family? 

The answer to this question is more than just a simple tally of different sex 

chromosome systems. Evidence so far suggests that at least two sex chromosome 

systems have arisen independently in this family: the Chr19-based sex chromosome 

systems of the Gasterosteus species, and the Chr12-based XX-XV sex chromosome 
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system of P. pungitius (Chen and Reisman, 1970; Peichel et aI., 2004; Ocalewicz et 

al., 2008; Kitano et aI., 2009; Ross et al., 2009; Shapiro et aI., 2009). However, 

there are many unanswered questions about sex chromosome systems in other 

stickleback lineages. These unresolved issues mask a true understanding of sex 

chromosome diversity in this family. For example, we do not know if the Chr12 or 

Chr19-based sex chromosome systems are found in other stickleback species. We 

also do not know if the A. quadracus ZZ-ZW sex chromosome system is derived 

from either the P. pungitius or Gasterosteus sex chromosome systems. Sex 

chromosomes are unknown, or have never been sought, in two stickleback species, 

and only a single survey has documented sex chromosome diversity between 

different populations of the same species (Kitano et al., 2009). 

Thus, to uncover new answers to this broad question, I designed experiments 

to identify the sex determination mechanisms and sex chromosome systems that 

have evolved in the stickleback family (Gasterosteidae). In Chapter 2, I describe a 

set of experiments to search for genetic evidence of sex chromosome systems in 

two stickleback species, the brook stickleback (C. inconstans) and the fourspine 

stickleback (A. quadracus) (Figure 1.3; Figure 1.4). Based on the preliminary 

experimental results described in Chapter 2, I designed and executed an additional 

study to search for the sex chromosome system in A. quadracus (Figure 1.4). 

report the design and major findings of this study in Chapter 3. 

Do Sticklebacks Share the Same Sex Determination Gene? 

By definition, sex chromosomes house sex determination genes. While we 

know that diverse sex chromosome systems have evolved in the stickleback family, 

we do not know if different stickleback species share the same sex determination 

gene. It is possible that each sex chromosome system in sticklebacks has its own 

sex determination gene. However, it is also possible that a single sex determination 

locus has transposed to different sex chromosome systems. To resolve this issue, 

we must identify the sex determination gene in one species with sex chromosomes, 

and see if this gene is present in other sex chromosome systems. 
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To address this question, I designed a screen to identify genes in the G. 

aculeatus sex determination pathway, particularly the master sex determination 

gene. These investigations were in the form of a comprehensive screen to identify 

genes that are differentially expressed between male and female G. aculeatus 

embryos and larvae. These differentially expressed genes include autosomal loci, 

as well as genes on the X and Y sex chromosomes of G. aculeatus (Figure 1.2). 

report the major conclusions of this study in Chapter 4. 

Chapter 5 summarizes the major findings of all of my studies. I also take the 

opportunity to suggest future experiments that will build on the results summarized in 

this dissertation. I sincerely hope my conclusions will spawn future studies of the 

evolution of sex chromosomes in this fascinating model system. Sticklebacks are a 

truly unique model through which we can investigate the early stages of sex 

chromosome degeneration and the enigmatic phenomenon of sex chromosome 

turnover. 
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Figure 1.1. A phylogeny of the stickleback fish family (Gasterosteidae). 

Species 2n System Chr References 

Fourspine 46 ZW Chen and Reisman, 1970; Ross 
Apeltes quadraeus et ai" 2009; this dissertation 

(chapters 2 and 3) 

Fifteenspine 
Spinaehia spinaehia 

Brook 46 Ross et ai" 2009; this 
Q) Culaea ineonstans dissertation (chapter 2) «I 

"C 
'(j) -I/) 0 Ninespine 42 XY 12 Ocalewicz et al" 2008; Shapiro et .... 
Q) Pungitius pungitius ai" 2009; Ross et ai" 2009; -I/) Ocalewicz et ai" 2011 
«I 

(!) Black-spotted 42 X1X2Y 12, 19 Ross et ai" 2009 
Gasterosteus wileatlandi Male 211 " ,II 

Threespine (Sea of Japan) 42 X,X2Y 09,19 Kitano et ai, 2009 
Gasterosteus aeuleatus ivlale 211 = 41 

Threespine 42 XY 19 Peichel et ai" 2004; Ross and 
Gasterosteus aeuleatus Peichel, 2008; Ocalewicz et al" 

2011; this dissertation 
(chapters 3 and 4) 

The stickleback phylogeny is based on Kawahara et al. (2009), and incorporates 
major findings regarding the evolution of sex chromosomes. Branch lengths are 
arbitrary. Listed are the common name and scientific name for each stickleback 
species, the diploid number, the heteromorphic sex chromosome system (if known), 
and the chromosome on which the sex determination gene is found (if known). 
Chromosomes in all stickleback species are numbered in reference to the genome 
of G. aculeatus. 
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Fi ure 1.2. A male threes ine stickleback 

From Lake Washington (Mercer Slough Nature Park, Bellevue, Washington, USA). 
Image provided courtesy of Shaugnessy McCann. 
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Figure 1.3. Brook sticklebacks 

F1 progeny from a cross between a female from Fox Holes Lake (Northwest 
Territories, Canada) and a male from Pine Lake (Alberta, Canada). Image provided 
courtesy of Joseph Ross. 
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Progeny of crosses between females and males from the West River (New Haven, 
Connecticut, USA). 



19 

CHAPTER TWO 

The Search for Genetic Markers Linked to Sex Determination Loci in Cu/aea 

inconstans and Ape/tes quadracus 

SUMMARY 

Previous studies have identified genetic markers linked to a sex determination locus 

in four sex chromosome systems among three different stickleback species. We 

searched for similar SEX-linked markers in two other stickleback species, Cu/aea 

inconstans and Ape/tes quadracus, using two different techniques. Neither 

technique uncovered SEX-linked markers in either species, despite reports of a ZZ

ZW sex chromosome system in A. quadracus. However, we were able to show that 

the A. quadracus sex chromosome system evolved independently from the other 

known stickleback sex chromosome systems. 

The experiments described in this chapter were executed by myself, Jessica Boland, 

and Catherine Peichel. Where applicable, I have used terms "I" and "we" to 

distinguish between experiments conducted solely by myself (such as amplified 

fragment length polymorphism genotyping) and experiments conducted by myself 

and my collaborators. 

Portions of this chapter were published previously in: 

Joseph A. Ross, James R. Urton, Jessica Boland, Michael D. Shapiro, and 

Catherine L. Peichel. 2009. "Turnover of Sex Chromosomes in the Stickleback 

Fishes (Gasterosteidae)" PLoS Genetics 5(2): e1000391. 
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INTRODUCTION 

Genetic SEX-linked Markers in Sticklebacks 

Four sex chromosome systems in the stickleback family were first identified 

by genetic markers linked to a sex determination locus (SEX-linked markers). Those 

four systems have been mapped relative to the genome of the threespine 

stickleback, Gasterosteus aculeatus (Figure 1.1). All of these sex chromosome 

systems were later confirmed by a cytogenetic technique, fluorescence in situ 

hybridization (FISH), using bacterial artificial chromosome (BAC) probes from G. 

aculeatus (Kingsley et a/., 2004; Peichel et a/., 2004; Ross and Peichel, 2008; Kitano 

et a/., 2009; Ross et al., 2009; Shapiro et a/., 2009). 

Lack of SEX-linked Markers in C. inconstans, A. quadracus, and S. spinachia 

No publications report SEX-linked markers in the remaining species in the 

Gasterosteidae, Ape/tes quadracus, Culaea inconstans, and Spinachia spinachia. 

There have been no investigations into the sex determination mechanism of S. 

spinachia, a stickleback species native to coastal regions of Europe. A single study 

reported no heteromorphic sex chromosomes in a C. inconstans population from 

New York, and a ZZ-ZW sex chromosome pair in A. quadracus (Chen and Reisman, 

1970). 

These reports raise a number of questions regarding the evolution of sex 

determination mechanisms. C. inconstans could have homomorphic sex 

chromosomes, or a sex determination mechanism that is not genetic. The A. 

quadracus ZZ-ZW sex chromosome pair could have arisen independently of the sex 

chromosome systems found in other stickleback species, or it could have evolved 

from a common ancestral sex chromosome system in this family. To address these 

questions, I sought to identify SEX-linked genetic markers in C. inconstans and A. 

quadracus. Parallel to this screen, my colleague Joseph Ross conducted a FISH 

screen in both A. quadracus and C. inconstans to investigate the possibility that sex 

chromosome systems in these species could be related to the sex chromosome 

systems in Gasterosteus species (Chr19) and P. pungitius (Chr12). 
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MATERIALS AND METHODS 

Specimen Collection and Crosses 

C. inconstans specimens were collected from Pine Lake (Wood Buffalo 

National Park, Alberta, Canada) and Fox Holes Lake (Northwest Territories, 

Canada) in June 2005 (permit WB05-1010). A single C. inconstans cross was 

generated using a female from Fox Holes Lake and a male from Pine Lake. A. 

quadracus specimens were collected from Pilgrim Lake (Cape Cod National 

Seashore, Massachusetts) in May 2004 (permit CACO-2005-SCI-0014), and a 

single cross was generated using a male and female. Progeny from all crosses 

were grown in 11 OL aquarium tanks (75cm length x 30cm depth x 46cm height). For 

both species, fish were kept in 0.35% seawater (3.5g/L Instant Ocean salt (Aquarium 

Systems, Mentor, Ohio, USA); OAmLlL NaHC03) at approximately 16°C in summer 

lighting conditions (16h light: 8h dark). Fish were fed brine shrimp nauplii twice 

daily. All animal procedures were approved by the Fred Hutchinson Cancer 

Research Center Institutional Animal Care and Use Committee (protocol 1575). 

Sex Phenotyping 

Fish were euthanized in 0.025% tricaine methanesulfonate (MS-222). The 

phenotypic sex of each individual was ascertained by direct examination of the 

gonads. The C. inconstans cross consisted of 16 females and 14 males. The A. 

quadracus cross consisted of 18 females and 10 males. 

DNA Extraction 

Genomic DNA from each individual was extracted as follows: a section of the 

caudal fin was removed and treated with 0.2mg Proteinase K (Invitrogen, Carlsbad, 

California, USA) for 14-16 hours at 55°C. Following an extraction with an equal 

volume of phenol:chloroform, genomic DNA was precipitated in ethanol and 

resuspended in 50IJL Tris/EDTA (10mM Tris; 1mM EDTA) and stored at 4°C. 
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Microsatellite Genotyping 

PCR-based genotyping of G. aculeatus and P. pungitius microsatellite 

markers was performed using genomic DNA from the parents and progeny of the C. 

inconstans and A. quadracus crosses. Genotyping was performed as previously 

described (peichel et a/., 2001; Shapiro et a/., 2009) with the following exceptions. 

Reactions were run on an ABI 3100, and ABI GeneMapper 3.7 was used to analyze 

genotypes (Applied Biosystems, Carlsbad, CA, USA) 

Amplified Fragment Length Polymorphism (AFlP) Genotyping 

Amplified fragment length polymorphism (AFLP) screens (Vos et a/. , 1995) 

were performed on parents and individuals from the C. inconstans and A. quadracus 

crosses. The AFLP Plant Mapping Protocol (Applied Biosystems) was used with the 

following alterations. Genomic DNA (1-2I-1g) was cut with 50 units of EcoRI (New 

England Biolabs, Ipswich, MA, USA) and 25 units of Msel (New England Biolabs) 

with 10l-lg of BSA for 4 hours at 37°C. Reactions were then heated to 65°C for 20 

minutes. Preselective amplifications were run on a Peltier Thermal Cycler-100 (PTC-

100, MJ Research, Saint-Bruno-de-Montarville, Quebec, Canada). For the AFLP 

selective amplifications, each of 8 EcoRI primer pairs (E-AAC, E-AAG, E-ACA, E

ACC, E-ACG, E-ACT, E-AGC, E-AGG) were paired with each of 6 Msel primer pairs 

(M-CAA, M-CAC, M-CAG, M-CAT, M-CTA, M-CA), for a total of 48 primer pairs. 

EcoRI primers were labeled with 6-FAM. Selective amplifications were run on a 

PTC-100 (MJ Research). Reactions were run on an ABI 3100, and genotypes were 

analyzed with the "AFLP Default" method on ABI GeneMapper 3.7 (Applied 

Biosystems). 

linkage Analysis 

Genetic linkage maps were generated using the default parameters in 

JoinMap3.0 (van Ooijen and Voorips, 2001). A Kruskal-Wallis test in MapQTL4.0 

(van Ooijen et a/. , 2002) was used to search for associations between marker 

genotype and sex phenotype. 
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RESULTS 

SEX is Not linked to Chr12 or Chr19 in C. in cons tans or A. quadracus Crosses 

We specifically tested whether genetic markers from Chr12 and Chr19 (which 

are SEX-linked in other species) are linked to a single SEX-determination locus 

governing female or male development in C. inconstans or A. quadracus. However, 

we found no associations between marker genotype and the phenotype of sex 

(Table 2.1). In the C. inconstans cross, a single Chr12 marker from P. pungitius, 

Pun234, was polymorphic, but not linked to SEX. In that same cross, four G. 

aculeatus and P. pungitius Chr19 makers were polymorphic, but not SEX-linked. 

Seven G. aculeatus and P. pungitius microsatellite markers from Chr12 were 

polymorphic in the A. quadracus cross, but none were SEX-linked. In addition, two 

Chr19 markers were not linked to sex in the A. quadracus cross. 

No Microsatellite or AFLP Polymorphic Markers are SEX-linked in C. 

inconstans or A. quadracus Crosses 

To perform a genome-wide screen for markers that are SEX-linked in either 

C. inconstans or A. quadracus, we genotyped both crosses with all available G. 

aculeatus microsatellite markers (576 total) and all available P. pungitius 

microsatellite markers (162 total). However, many markers either did not yield a 

PCR product or were not polymorphic in either the C. inconstans cross or the A. 

quadracus cross (Table 2.2). In addition, among those markers that were 

polymorphic in these crosses, we found no evidence of any markers that were linked 

to the phenotype of sex in either the C. inconstans or A. quadracus cross (Table 

2.2). 

Those polymorphic microsatellite markers only represented 17 (of 21) G. 

aculeatus and 19 (of 30) P. pungitius linkage groups in the C. inconstans cross, and 

15 G. aculeatus and 15 P. pungitius linkage groups in the A. quadracus cross. 

Since this survey of microsatellite markers did not cover all linkage groups in either 

species, I also used an amplified fragment length polymorphism (AFLP) approach to 

identify additional polymorphic markers in both species. I used 48 different AFLP 

primer combinations to identify 35 polymorphic loci in C. inconstans and 86 
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polymorphic loci in A. quadracus. However, none of these polymorph isms were 

linked to SEX in either species (Table 2.3). 

DISCUSSION 

C. inconstans Sex Determination Mechanism Evolved Independently of the 

Gasterosteus and P. pungitius Sex Chromosome Systems 

My study did not uncover any markers that are linked to a locus controlling 

male or female sex determination in the C. inconstans cross. In parallel to this study, 

Joseph Ross conducted a survey of chromosome morphology in males and females 

from this same C. inconstans cross. Metaphase chromosome number between the 

sexes was identical, indicating the absence of the types of X1X1X2X2-X1X2Y sex 

chromosome systems found in G. wheatlandi and the G. acu/eatus population from 

the Sea of Japan (Kitano et al., 2009; Ross et al., 2009). In addition, he uncovered 

no evidence for a heteromorphic sex chromosome pair in either males or females 

(Ross et al., 2009). Thus, we find no evidence for a heteromorphic XX-XV or ZZ-ZW 

sex chromosome system in C. inconstans. 

These data are consistent with Chen and Reisman (1970), who reported the 

absence of a heteromorphic sex chromosome pair in a different C. inconstans 

population (Cayuga Inlet, Ithaca, New York, USA). Thus, it is possible that C. 

inconstans could have a "cryptic" (homomorphic) sex chromosome system, in which 

the Y or W chromosome is morphologically identical to its X or Z counterpart in 

metaphase chromosome spreads. Homomorphic sex chromosome pairs may 

indicate that the non-recombining region on the Y or W is not large enough to alter 

chromosome morphology relative to the X or Z chromosome. Alternatively, the non

recombining region could be large, but sequence degeneration within the Y or W 

non-recombining region has not resulted in a divergence in metaphase chromosome 

morphology between the sex chromosomes. For example, if the non-recombining 

region on the Y or W is altered through the simUltaneous deletion of native loci and 

the addition of transposable elements, then morphology of the Y or W may not 

change appreciably compared to the X or Z. There is evidence that this type of 

event may have occurred on the sex chromosomes of G. aculeatus. The X and Y 
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sex chromosomes of this species are of similar size in metaphase chromosome 

spreads, differing only in centromere position, despite the fact that at least one large 

deletion (encompassing 6Mb of X chromosome sequence) has occurred on the Y 

(Ross and Peichel, 2008). However, a limited analysis of approximately 0.5Mb of Y 

chromosome sequence has shown that transposable elements have invaded the 

non-recombining region of the Y chromosome (peichel et aI., 2004). This addition of 

transposable elements to the G. aculeatus Y chromosome may explain why the X 

and Y chromosomes are of similar size in metaphase spreads. This example 

illustrates how C. inconstans could have a homomorphic sex chromosome system 

with a relatively large non-recombining region. 

If C. inconstans has a genetic sex determination mechanism found on a 

homomorphic sex chromosome system, our current approach has not identified it. 

This could be due to a lack of genome-wide coverage of the markers. In our C. 

inconstans cross, we could not find polymorphic markers from 4 of 21 G. acufeatus 

linkage groups and 11 of 30 P. pungitius linkage groups. While none of an 

additional 35 polymorphic AFLP markers were linked to SEX in the C. inconstans 

cross, it is still likely that we lacked sufficient markers to survey all of the 23 

chromosome pairs in C. inconstans. However, if C. inconsfans has a sex 

chromosome system, its evolutionary origins are independent of the sex 

chromosome systems of Gasterosteus species and P. pungitius. Our results provide 

genetic evidence for this, since neither one Chr12 marker nor four Chr19 markers 

are linked to SEX in the C. inconstans cross. These data are consistent with FISH 

experiments demonstrating that G. aculeatus Chr12 and Chr19 BAC probes 

hybridize to identical locations on homomorphic chromosome pairs in both male and 

female C. inconstans chromosome spreads (Ross ef al., 2009). Thus, any sex 

chromosome system in C. inconstans likely arose independently of sex chromosome 

systems in Gasterosteus species and P. pungitius. 

C. inconstans could also have a sex determination mechanism other than 

simple genetic sex determination (XX-XY or ZZ-ZW sex chromosomes). These 

mechanisms could be polygenic sex determination, environmental sex 

determination, or a polyfactorial signal of both genetic and environmental cues. C. 
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inconstans is a freshwater fish inhabiting diverse inland lake, stream, and river 

environments across the Interior Plans and Canadian Shield physiographic regions 

of North America (Wootton, 1976). Only a few of these populations have been 

examined for evidence of sex determination; it is also possible that different C. 

inconstans populations have evolved divergent sex determination mechanisms. 

A remaining challenge is to identify the sex determination mechanism in this 

species. As environmental sex determination mechanisms in fish can range from 

temperature and photoperiod to social cues (Bull, 1983; Conover and Heins, 1987; 

Godwin et al., 2003), it is impractical to propose screening even one C. inconstans 

population for possible environmental sex determination mechanisms. I believe that 

it is more beneficial to first rule out the possibility of homomorphic sex chromosomes 

and polygenic sex determination. 

One approach to search for evidence of genetic sex determination sex is 

through the hormonal manipulation of the sex phenotype in individual fish, followed 

by an examination of the sex of their progeny. This approach employs experimental 

protocols established to control the phenotypic sex of individual fish, regardless of 

genotype (lwamatsu, 1999; Hahlbeck et aI., 2004; Hamaguchi et al., 2004). 

Recently-fertilized fish clutches are treated with hormones to override or supersede 

the natural sex determination mechanism. One group would be treated with 

androgens to cause the fish to develop as fertile phenotypic males, while the other 

group would be treated with estrogens to induce development as phenotypic 

females (Iwamatsu, 1999; Hamaguchi et al., 2004). After these hormone-treated 

fish grow to reproductive maturity, we would mate phenotypic females to wild-type 

males and mate phenotypic males to wild-type females. This approach would 

identify a simple genetic sex determination system only if these matings generated 

some sons-only clutches (through the crossing of sex-reversed ZZ females to wild

type ZZ males) or daughters-only clutches (through the crossing of sex-reversed XX 

males to wild-type XX females) (Figure 2.1) (Iwamatsu, 1999; Hamaguchi et al., 

2004). Although these hormone-based sex-reversal and mating experiments would 

identify simple XX-XV or ZZ-ZW sex determination systems (lwamatsu, 1999; 

Hamaguchi et al., 2004), they would not reveal the degree of sex chromosome 
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degeneration, or whether additional genetic or environmental factors influence sex 

determination. 

If hormonal studies suggested that there is a genetic sex determination 

mechanism, then genetic and genomic techniques could be used to identify the sex 

chromosome pair in these species. The sex chromosome systems of both G. 

aculeatus and P. pungitius were identified following the generation of genome-wide 

microsatellite markers for those species (peichel et al., 2004; Shapiro et aI., 2009). 

Thus, it is possible that the generation of sufficient genetic markers to cover all C. 

inconstans linkage groups would reveal the presence of sex chromosomes in this 

species. If the non-recombining region on the Y or W were sufficiently small, these 

genetic markers may still overlook a homomorphic sex chromosome system in this 

species. It is difficult to know what marker coverage is needed. In the medaka 

(Oryzias /atipes), the male-specific region of the Y chromosome is less than 0.3Mb, 

yet sex-specific markers from this region have been reported (Matsuda et al., 2002). 

However, multiple methods (including AFLP) used to screen over 16,000 

polymorphic markers failed to identify any SEX-linked markers in the green-spotted 

pufferfish (Tetraodon nigroviridis) (Li et al., 2002). Given that these negative results 

are difficult to interpret (i.e. is there no genetic sex determination mechanism, or 

limited coverage of the genome?), I believe such a search should only be 

undertaken once alternative methods (such as a hormone study) have revealed the 

existence of a sex chromosome system. 

Cytogenetic techniques could also identify a sex chromosome pair. 

Comparative genomic hybridization (CGH) is an especially powerful technique which 

has been use to successfully identify sex chromosome pairs in reptiles (Ezaz et al., 

2005; Martinez et al., 2008). In CGH, genomic DNA from males and females are 

each labeled with a different fluorescent probe, combined, and hybridized to male 

and female chromosome spreads. We could then scan female and male metaphase 

chromosome spreads for regions of differential fluorescent labeling, indicative of the 

non-recombining region of a hemizygous sex chromosome (Martinez et a/. , 2008). 

However, it is possible that a small non-recombining region would not be detected 

by CGH. Of the techniques described here, the hormone-based sex reversal and 
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mating experiment has the greatest potential to reveal the existence of a genetic sex 

determination mechanism on a homomorphic sex chromosome pair in C. 

inconstans. Only if this technique discounted the possibility of sex chromosomes in 

this species should more complex polygenic, environmental, or polyfactorial sex 

determination mechanism be considered. 

Evidence for the Independent Origin of the A. quadracus ZZ-ZW Sex 

Chromosome System 

Chen and Reisman (1970) reported heteromorphic ZZ-ZW sex chromosomes 

in an A. quadracus population from Reid State Park in Maine. My colleague, Joseph 

Ross, found a heteromorphic ZZ-ZW sex chromosome pair in an A. quadracus 

population from Demarest Lloyd State Park and Pilgrim Lake in Massachusetts 

(Ross et aI., 2009). In our study, we have genetic evidence that the ZZ-ZW sex 

chromosome system in A. quadracus population from Pilgrim Lake is not related to 

the Chr19-based XX-XV system of G. aculeatus or the Chr12 XX-XV system of P. 

pungitius. Our evidence is in the form of Chr19 and Chr12 genetic markers from G. 

aculeatus and P. pungitius, none of which are SEX-linked in our A. quadracus cross 

from Massachusetts. In addition, Joseph Ross showed that G. aculeatus Chr12 and 

Chr19 BAC probes hybridize to homomorphic chromosome pairs in A. quadracus 

males and females (Ross et a/., 2009). In our study, no other polymorphic G. 

aculeatus markers, P. pungitius markers, or AFLP markers were linked to SEX in the 

A. quadracus cross. 

As in C. inconstans, our screen most likely failed to identify SEX-linked 

genetic markers in A. quadracus due to the low coverage of polymorphic markers 

across the genome. Polymorphic markers represented only 15 of 21 G. aculeatus 

linkage groups and 15 of 30 P. pungitius linkage groups. The addition of 86 

polymorphic AFLP markers probably still does not provide sufficient coverage of the 

23 chromosome pairs in A. quadracus to identify the ZZ-ZW chromosome pair. 

There are several approaches we could take to identify SEX-linked markers in 

A. quadracus. One approach would be to expand the coverage of polymorphic 

markers in our cross, coupled with a genetic survey of additional A. quadracus 
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crosses, to increase the chances of identifying markers from the ZZ-ZW pair. 

However, given that the extent of divergence between the Z and W has not been 

studied, we do not know the number of polymorphic markers and individuals needed 

to find markers form the non-recombining region of the sex chromosomes. Another 

method that would permit a thorough survey of each A. quadracus chromosome pair 

is FISH, which is possible due to the G. aculeatus BAC library (Kingsley et aI., 

2004). FISH has already been used successfully to study the sex chromosomes in 

G. aculeatus, G. wheatlandi, and P. pungitius (Ross and Peichel, 2008; Kitano et al., 

2009; Ross et aI., 2009). This screen would permit us to test fluorescently-Iabeled 

genomic probes from each G. acufeafus chromosome pair on each A. quadracus 

chromosome pair and locate a set of probes that hybridize to the heteromorphic pair 

in female A. quadracus metaphase spreads. In Chapter 3, I report the results of 

such a screen on an A. quadracus population from Connecticut. 



Table 2.1. SEX-linked G. aculeatus and P. eungitius microsatellite markers used for genotyeing. 
G. aculeatus G. wheatlandi P. eungJtius C. inconstans A. guadracus 

Position SEX- SEX- SEX- PCR SEX- PCR SEX-
Marker Chr (Mb) linked Chr linked Chr linked product linked product linked 
Pun99 12 5.576 NT 12/19 yes 12 yes FP NT yes no 
Stn327 12 5.800 no 12/19 yes FP NT NP NT NP NT 
Pun 7 12 8.475 no NP NT 12 yes NP NT yes no 

Stn287 12 9.516 no 12/19 NT 12 yes NP NT yes no 
Stn276 12 9.516 no 12/19 NT 12 yes NP NT yes no 
Stn144 12 11.037 no FP NT 12 yes NP NT yes no 
Stn142 12 12.635 no 12/19 yes NP NT FP NT yes no 
Pun 2 12 12.276 no 12/19 yes 12 yes NP NT NP NT 

Pun234 12 15.613 NT FP NT 12 yes yes no yes no 
Stn186 19 1.942 yes NP NT 19 no yes no FP NT 
Pun117 19 6.325 yes 12/19 yes 19 no FP NT yes no 
Stn235 19 7.396 yes 12/19 yes NP NT FP NT FP NT w 
Stn194 19 11.787 yes 12/19 yes 19 no NP NT yes no 0 

Pun268 19 13.170 FP FP NT 19 no yes no FP NT 
Stn284 19 13.658 yes 12/19 yes NP NT NP NT FP NT 
Stn168 19 13.736 NP NP NT 19 no yes no FP NT 
Cyp19b 19 16.671 yes 12/19 yes 19 no yes no FP NT 
For each marker, the G. aculeatus chromosome (Chr) designation and position in the G. aculeatus genome assembly 
(Broad assembly S1, http://www.ensembl.org/Gasterosteus_aculeatus/index.html) is shown. If a marker was also mapped 
in G. wheatlandi or P. pungitius, the Chr designation in that species is also indicated (Ross et a/., 2009). FP ("Failed 
PCR") indicates that PCR product was not obtained for a marker in that species. NP ("Not polymorphic") indicates that the 
PCR product obtained was not polymorphic in the cross for that species. Markers are labeled NT ("Not tested") if sex 
linkage for a cross could not be tested. 



Table 2.2. Genome-wide microsatellite markers from G. aculeatus and P. pungitius used for genotyping C. 
inconstans and A. quadracus crosses. 

c. inconstans A. quadracus 

Marker 
Yielded Yielded 

Total PCR Polymorphic SEX-linked PCR Polymorphic SEX-linked 
source 

product product 

G. aculeatus 576 225 (39.1%) 66 (11.5%) 0(0%) 135 (23.4%) 47 (8.2%) 0(0%) 

P. pungitius 162 86 (53.1%) 43 (26.5%) 0(0%) 51 (31.5%) 26(16.1%) 0(0%) 

W 
->. 
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Table 2.3. AFlP-generated bands in C. inconstans and A. quadracus. 

Total number of AFLP bands generated 
Polymorphic 
SEX-linked 

C. inconstans A. quadracus 
1,927 1,454 

35 86 
o 0 
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Figure 2.1. An overview of a hormone-based sex-reversal and mating 
experiment. 

Hypothetical lZ.-ZW Sex Chromosomes 
in Cu/aea inconstans 

Sf? 0 
ZWxZZ , 

C. inconstans ro en : . 
Treat with estradiol: .... Divide into 2 treatment ........ Treat With testosterone : 
ZW females ~ groups before sexual ...,.. ZW males (sex-reversed) 
ZZ females (sex-reversed) differentiation begins ZZ males 

j;ross to wild- Cross to Wild-typ1 
type males (ZZ) females (ZW) 

__ /' " "" '-I ,-<". + 

ZW X ZZ ZZ x ZZ ZW x ZW ZW x ZZ 

•• •• ZZ sons 
ZW daughters 

ZZ sons 

Males identified 
as the 
homogametic sex. 

ZZ sons 
ZW daughters 
ZW daughters 
WW ?? 

ZZ sons 
ZW daughters 

This approach could uncover a simple genetic sex determination or sex 
chromosome system (XX-XY or ZZ-ZW) in C. inconstans. The example assumes C. 
inconstans has a ZZ-ZW sex chromosome system. If C. inconstans had a XX-XV 
sex chromosome system, then the mating of a sex-reversed female to a wild-type 
female would yield all-female daughters, revealing females as the homogametic 
(XX) sex. If C. inconstans did not have a sex chromosome system, then no pairing 
of a hormone-treated fish to a wild-type fish should produce only progeny of a single 
sex. 
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CHAPTER THREE 

Mechanisms for Chromosome Evolution and Sex Chromosome Diversity in 

Ape/tes quadracus 

SUMMARY 

The fourspine stickleback, Apeltes quadracus, has a heteromorphic ZZ-ZW sex 

chromosome system. However, as shown in Chapter 2, I was unsuccessful in 

locating genetic markers linked to a sex determination locus in this species. I turned 

to fluorescence in situ hybridization (FISH) as an alternative mechanism to identify 

the A. quadracus ZZ-ZW pair. By FISH, I identified major differences in karyotype 

between A. quadracus and the threespine stickleback, Gasterosteus aculeatus. 

These differences likely reflect the types of chromosome rearrangements that have 

occurred in these species since they diverged from a common ancestor. I 

discovered that rearrangements such as centric fissions, Robertsonian fusions, and 

inversions occurred on approximately half of the chromosome pairs in the 

karyotypes of both species. In addition, I discovered that the A. quadracus 

population used for this screen lacks the heteromorphic ZZ-ZW sex chromosome 

pair found in other populations. This population may have a homomorphic ZZ-ZW 

sex chromosome pair related to the ZZ-ZW pair in other populations. Alternatively, a 

new sex chromosome pair or other sex determination mechanism may have evolved 

in this population. Thus, sex chromosomes in A. quadracus, and the stickleback 

family, may be more diverse than previously thought. 

I performed and analyzed all experiments described in this chapter. Shaugnessy 

McCann assisted in fish collection and the preparation of chromosome spreads for 

FISH. Where applicable, I use the plural pronoun "we" to credit his contributions. 

Portions of this chapter have been accepted for publication: 

James R. Urton, Shaugnessy R. McCann, and Catherine L. Peichel. "Karyotype 

Differentiation Between Two Stickleback Species (Gasterosteidae)." Cytogenetic 

and Genome Research. In press. 
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INTRODUCTION 

Sex Chromosome Diversity in the Sticklebacks 

At least five sex chromosome systems have been identified in the stickleback 

family, and four have been mapped relative to the genome of the threespine 

stickleback, Gasterosteus aculeatus (Figure 1.1). Only one of these species, 

Apeltes quadracus, has ZZ-ZW sex chromosomes (Chen and Reisman, 1970; Ross 

et al., 2009). In Chapter 2, I presented evidence that the ZZ-ZW sex chromosome 

pair of A. quadracus is not related to the other known stickleback sex chromosome 

systems (Ross et al., 2009). However, our attempts to uncover genetic markers 

linked to a sex determination locus in A. quadracus were not successful. 

FISH as a Tool for Studying Chromosome Rearrangements 

To identify the A. quadracus sex chromosome pair relative to the G. aculeatus 

genome, I turned to the cytogenetic technique fluorescence in situ hybridization 

(FISH). FISH has been adapted as a tool for studying the sex chromosome systems 

of sticklebacks, making use of the bacterial artificial chromosome (BAC) libraries for 

G. aculeatus (Kingsley et al., 2004). My colleague Joseph Ross has used FISH to 

map the divergence between the G. aculeatus X and Y sex chromosomes (Ross and 

Peichel, 2008), confirm two V-autosome fusion events in sticklebacks (Kitano et a/., 

2009; Ross et a/., 2009), and show that Chr12 and Chr19 BAC probes do not 

hybridize to heteromorphic chromosome pairs in C. inconstans or A. quadracus 

(Ross et al., 2009). 

FISH has also been widely used to study chromosome rearrangements in 

other species. Previous surveys of chromosome number and morphology in the 

stickleback family revealed diverse karyotypes among species (Chen and Reisman, 

1970; Ocalewicz et a/., 2011), as well as within a single species (Kitano et al., 2009). 

The phylogenetic relationships between species in the stickleback family have 

previously been disputed (Mattern, 2004). However, a recent comprehensive 

phylogeny has resolved the evolutionary relationship among the sticklebacks 

(Kawahara et al., 2009). Mapping available karyotype data onto this phylogeny 

suggests a more rapid divergence in stickleback karyotype than previously 
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appreciated, since even closely related stickleback species have diverged in diploid 

chromosome number, karyotype, and sex chromosome system (Figure 1.1). 

To explore the rapid karyotypic evolution of the stickleback family in more 

detail, I designed a comprehensive FISH survey to identify the major genomic 

rearrangements that have occurred between G. aculeatus and A. quadracus. These 

species have different diploid chromosome numbers, divergent karyotypes, and 

independently-evolved sex chromosome systems (Figure 1.1) (Chen and Reisman, 

1970; Peichel et a/., 2004; Ross et a/., 2009). Thus, I designed my survey with three 

goals in mind: to identify the metaphase chromosome morphology of each G. 

acufeatus chromosome pair, to reveal the genomic rearrangements that generated 

the diverse karyotypes of these species, and to reveal the identity of the A. 

quadracus ZZ-ZW sex chromosome pair. 

MATERIALS AND METHODS 

Specimen Collection and Crosses 

Male and female A. quadracus individuals were collected from the West River 

Memorial Park in New Haven, Connecticut in May 2009. Males and females bred 

naturally in the laboratory in July and August 2009. We grew progeny from these 

matings together in 474L aquarium tanks (183cm length x 46cm depth x 65cm 

height). In April and June 2010, we collected male G. aculeatus from two locations 

in Lake Washington: Union Bay in Seattle, Washington and the Mercer Slough 

Nature Park in Bellevue, Washington (Washington permit 10-049). We housed 

these fish in 11 OL aquarium tanks (75cm length x 30cm depth x 46cm height). For 

both species, we kept fish in summer lighting conditions (16h light: 8h dark) at 

approximately 16°C in 0.35% saltwater (3.5g/L Instant Ocean salt (Aquarium 

Systems, Mentor, Ohio, USA.); O.4mLlL NaHC03). We fed the fish live brine shrimp 

nauplii twice daily. All procedures were approved by the Fred Hutchinson Cancer 

Research Center Institutional Animal Care and Use Committee (protocol 1575). 
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Selection of FISH Probes 

I used G. aculeatus BAC clones from the CHORI-215 library (Kingsley et at., 

2004) as probes for FISH (Table 3.1). To identify BACs, I extracted 200kbp of 

genomic sequence from the end of each chromosome assembly (BROAD S1 

assembly, February 2006, available at 

http://www.ensembl.org/Gasterosteus_aculeatus/index.html) and used th is 

sequence in a BLAST search of the publicly available BAC end sequences (Kingsley 

and Peichel, 2007). If both the T7 and SP6 reads of the BAC clones aligned within 

the 200kbp region, I used the end sequences in a BLAT search against the G. 

aculeatus genome. If the paired end sequences of the clone aligned to the desired 

chromosome assembly in opposing orientation, with expected separation based on 

the average size of a CHORI-215 BAC insert (Kingsley et al., 2004), I then used the 

clone as a FISH probe. 

For 18 of 21 G. aculeatus chromosomes, the BAC clones aligned to a region 

within 2.6Mbp of the predicted ends of that chromosome assembly and hybridized to 

the ends of chromosomes in G. aculeatus male metaphase spreads. For three 

chromosomes, one BAC clone selected by this method did not hybridize to the end 

of a chromosome pair in G. aculeatus male metaphase spreads. In those three 

cases, I screened additional 200kbp regions of those chromosome assemblies until I 

identified BAC clones that met the above selection criteria and hybridized to the 

ends of a chromosome pair in male G. aculeatus metaphase spreads. For the 

chromosomes involved (Chr16, Chr19, and Chr20), errors in the G. aculeatus 

genome assembly, as previously reported for Chr19 (Ross and Peichel, 2008), or 

population-specific chromosome rearrangements could account for these 

observations. 

Cytogenetic Analysis 

We prepared metaphase spreads as described previously (Ross and Peichel, 

2008), with the following modifications. We performed intraperitoneal injections of 

5flL (A. quadracus) or 10flL (G. acu/eatus) of 1 % colchicine in phosphate-buffered 

saline into adult fish and incubated them for 12-14 hours in an aquarium. After 
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euthanizing the fish in 0.025% tricaine methanesulfonate (MS-222), we determined 

the sex of individual fish by examination of the gonads. We pooled spleen tissue 

from several individuals (Table 3.2) to make metaphase spreads of males and 

females from both species. 

I conducted FISH as previously described (Ross and Peichel, 2008), with the 

following modifications. I extracted and purified BAC DNA using an AutoGen 740 

automated system (AutoGen, Holliston, Massachusetts, USA) and quantified BAC 

DNA by gel electrophoresis. Using the Vysis nick translation kit (Abbott Labs, North 

Chicago, Illinois, USA), I labeled 1 ~g of each BAC clone with either ChromaTide 

Alexa Fluor 488-5-dUTP or 568-5-dUTP (Invitrogen, Carlsbad, California, USA). 

Two hundred nanograms of the labeled clones were ethanol precipitated with 1 O~g 

salmon sperm DNA and 1 O~g genomic DNA from the species used in the 

experiment. I allowed hybridization to proceed for 1-2 nights at 3rC. I viewed 

washed slides using the 100X objective on a Nikon Eclipse 80i microscope (Nikon, 

Shinjuku, Tokyo, Japan) with an automated filter turret using Chroma filters 31 000v2 

(DAPI), 41001 (FITC), and 41004 (Texas Red) (Chroma, Bellows Falls, Vermont, 

USA). I captured images using a Photometrics Coolsnap ES2 camera 

(Photometrics, Tucson, Arizona, USA) and used NIS Elements imaging software 

(BR 3.00, SP7, Hotfix8, Build 548, Nikon, Shinjuku, Tokyo, Japan) to pseudocolor 

those images grey (DAPI), green (Alexa 488), and purple (Alexa 568). 

Chromosome Morphology 

For G. aculeatus and A. quadracus, I used images from FISH experiments 

(Figure 3.1; Figure 3.2; data not shown) to assess the morphology of each 

chromosome. For each chromosome pair, I used Adobe Illustrator software (Adobe 

Systems, San Jose, California, USA) to make triplicate measurements of 

chromosome arms for both homologs in a FISH metaphase spread. I used these 

triplicate chromosome arm measurements to calculate the mean length of each 

chromosome arm for each homolog, and used the mean length of each 

chromosome arm to calculate the arm length ratio (long arm: short arm). I then used 

the arm length ratio for both homologs to calculate the mean arm length ratio for that 
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homologous pair. I repeated these measurements with a second FISH metaphase 

spread and averaged the chromosome arm length ratios for both chromosome 

spreads. I classified chromosomes according to this average arm length ratio (long 

arm: short arm). Chromosomes were classified as metacentric (1.0-1.7), 

submetacentric (1.7-3.0), acrocentric (3.0-7.0), or telocentric (7.0 or greater), 

following Levan et al. (1964) and Schrader et al. (1997) (Table 3.3). The only 

exception to this method is G. aculeatus Chr19, which is a heteromorphic XX-XV sex 

chromosome pair (peichel et aI., 2004; Ross and Peichel, 2008). For Chr19, I 

measured the arm lengths of the single X chromosome from three male G. aculeatus 

FISH images to calculate the mean arm length ratio for this chromosome, and I did 

not measure the Y chromosome (Figure 3.2; data not shown). For all FISH 

experiments and karyotype analyses, I examined multiple metaphase spreads from 

multiple pools of individual fish (Table 3.2). 

For chromosomes classified as "telocentric" in both species, I found variation 

in chromosome arm measurements both between homologs in the same metaphase 

spread and between metaphase spreads (data not shown). In addition, for Chr08 

and Chr18 in G. aculeatus and Chr06 in A. quadracus, chromosome pairs measured 

as "acrocentric" in one FISH metaphase spread and "telocentric" in the other. This 

variation, both within "telocentric" chromosomes and between chromosome pairs in 

different metaphase spreads, is likely due to the small size of the short arms in these 

chromosomes, which makes accurate measurements dependent on the morphology 

and resolution of individual metaphase spreads. Given this variation in chromosome 

arm measurements within and between "acrocentric" and "telocentric" 

chromosomes, I have chosen to combine "acrocentric" and "telocentric" 

chromosomes as a single chromosome morphology in my discussion, particularly in 

reference to the transitions between different chromosome morphologies in G. 

aculeatus and A. quadracus. 

Finally, I calculated the nombre fondamental (major chromosome arm 

number; NF) for both sexes of G. aculeatus and A. quadracus (Matthey, 1949; 

Klinkhardt, 1998). For calculating NF, I followed White (1978) and Klinkhardt (1998) 

and considered that metacentric and submetacentric chromosomes each have two 
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major chromosome arms, while acrocentric and telocentric chromosomes each have 

one major chromosome arm. 

RESULTS 

FISH Screen Identifies the Chromosome Morphology of Each G. aculeatus 

Chromosome Pair 

The G. aculeatus male karyotype consists of 42 chromosomes: 8 autosomes 

are metacentric, 6 are submetacentric, 16 are acrocentric, 10 are telocentric, and 

there is one submetacentric X and one metacentric Y (Table 3.4) (Ross and Peichel, 

2008). The relatively high NF (58) for G. aculeatus compared to its diploid number 

(2n = 42) reflects a relatively large number of metacentric and submetacentric 

chromosomes in the karyotype. I used G. aculeatus BAC clones from both ends of 

each chromosome assembly (Table 3.1) to identify the major morphological features 

of each G. aculeatus chromosome. The BAC clones hybridize by FISH to the ends 

of each chromosome (Figure 3.1; Figure 3.2). By combining FISH with 

measurements of chromosome arm length, I assigned each G. aculeatus 

chromosome pair to a morphological class (Table 3.3). 

FISH Screen Identifies the Major Differences between the G. aculeatus and A. 

quadracus Karyotypes 

I used the same BAC clones selected for the G. aculeatus male FISH 

analysis in a similar survey of the chromosomes in A. quadracus females and males 

in order to identify the major differences in karyotype between these species (Figure 

3.1; Figure 3.2). The A. quadracus karyotype consists of 46 chromosomes, of which 

6 chromosomes are metacentric, 4 are submetacentric, 32 are acrocentric, and 4 

are telocentric (Figure 3.3; Table 3.4). The dominance of acrocentric and telocentric 

chromosomes in the A. quadracus karyotype (78%) is reflected in a lower ratio of NF 

to diploid chromosome number; NF:2n is 56:46 for A. quadracus while it is 58:42 for 

G. aculeatus (Table 3.4). 

Two of the larger chromosome pairs in the G. aculeatus karyotype, Chr04 

(submetacentric) and Chr07 (metacentric), each correspond to two pairs of relatively 
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small acrocentric chromosomes in A. quadracus, accounting for the higher diploid 

chromosome number in the latter species (Figure 3.1; Table 3.3). Eight 

chromosome pairs appear to have undergone inversion in the time since G. 

aculeatus and A. quadracus diverged; six are pericentric inversions, which 

encompass the centromere, and two are paracentric inversions, which do not 

encompass the centromere (Figure 3.1). Five of the six pericentric inversions have 

resulted in visibly different morphology for the orthologous G. aculeatus and A. 

quadracus chromosomes. In three of these cases, metacentric or sUbmetacentric G. 

aculeatus chromosome pairs correspond to acrocentric chromosome pairs in A. 

quadracus; in the other two cases, telocentric G. aculeatus chromosome pairs 

correspond to metacentric chromosome pairs in A. quadracus (Figure 3.1; Table 

3.3). Eleven G. aculeatus chromosomes have identical hybridization patterns and 

morphologies in both G. aculeatus and A. quadracus (Figure 3.2). 

A. quadracus Males and Females from Connecticut Do Not Have 

Heteromorphic Sex Chromosomes 

A heteromorphic ZZ-ZW sex chromosome pair has been described in A. 

quadracus populations from Maine (Chen and Reisman, 1970) and Massachusetts 

(Ross et al., 2009). However, I found no evidence for a heteromorphic sex 

chromosome pair in A. quadracus male or female progeny from specimens collected 

in the West River in New Haven, Connecticut (Figure 3.3). In addition, hybridization 

patterns were identical in metaphase spreads from male and female A. quadracus 

for all FISH probes used in this study (data not shown). 

DISCUSSION 

Diversity of the A. quadracus ZZmZW Sex Chromosome Pair 

I undertook a comparative FISH study to identify the major genomic 

rearrangements that have occurred in lineages separating two stickleback species, 

A. quadracus and G. aculeatus. These species are intriguing subjects for such a 

study, not only because of reported differences in karyotype, but also due to the 

divergence of sex chromosome systems (Chen and Reisman, 1970; Ross et al., 
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2009). In G. aculeatus, Chr19 is an XX-XV sex chromosome system (peichel et aI., 

2004; Ross and Peichel, 2008). Two previous studies have shown that A. 

quadracus populations from Maine and Massachusetts have a ZZ-ZW sex 

chromosome pair (Chen and Reisman, 1970; Ross et al., 2009). As shown in 

Chapter 2, genetic markers from Chr19 are not linked to the sex determination locus 

in an A. quadracus family from Massachusetts (Ross et a/., 2009), and we found no 

genetic markers linked to a sex determination locus in A. quadracus. 

In A. quadracus from Connecticut, I find that neither females nor males have 

a heteromorphic chromosome pair indicative of either a ZZ-ZW or XX-XV sex 

chromosome system. Two possible explanations could account for the differences 

in sex chromosomes between the Connecticut population of A. quadracus and the 

Maine and Massachusetts populations. First, A. quadracus from Connecticut could 

have a cryptic (homomorphic) ZZ-ZW sex chromosome pair that is homologous to 

the ZZ-ZW pair in the Massachusetts and Maine populations. The W chromosome 

in the Maine and Massachusetts populations is large and acrocentric, while the Z 

chromosome is also acrocentric, but has a smaller long arm than the W 

chromosome (Chen and Reisman, 1970; Ross et al., 2009). The larger size of the 

W chromosome relative to the Z chromosome in those populations could be due to 

an increase in the amount of heterochromatin on the W chromosome relative to the 

Z chromosome following the cessation of recombination with the Z chromosome. If 

negligible amounts of heterochromatin were found on the A. quadracus W 

chromosome in the Connecticut population, then the Z and W chromosomes in this 

population would not be morphologically distinguishable. Such a population-specific 

difference in the amount of heterochromatin or repetitive DNA sequences present on 

the sex chromosomes has been reported in the guppy Poecilia reticulata (Hornaday 

et al., 1994), the platyfish Xiphophorus maculatus (Nanda et al., 2000), and the 

glass knifefish Eigenmannia virescens (de Almeida-Toledo et aI., 2001). Differences 

in the amount of heterochromatin on the sex chromosomes have also been reported 

between closely related species of salmon ids (Moran et al., 1996) and South 

American catfishes (Andreata et al., 1992). 
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Second, A. quadracus from Connecticut could have a different sex 

determination mechanism than the Massachusetts and Maine ZZ-ZW sex 

chromosome system. This mechanism could be genetic, environmental, or a 

combination of genetic and environmental signals. Extreme variation in the 

mechanism of sex determination within a single species is not without precedent. In 

the Atlantic silverside, Menidia menidia, both environmental and genetic sex 

determination mechanisms are present and vary by latitude (Conover and Heins, 

1987). Although we currently have little data on the ecology or population structure 

of A. quadracus, it would be interesting to determine whether variation in the sex 

determination mechanisms is associated with any ecological or geographical factors 

in this species. 

Even though A. quadracus individuals from Connecticut lack a heteromorphic 

ZZ-ZW sex chromosome system, my comparative FISH study could help to identify 

the ZZ-ZW sex chromosome system in A. quadracus. The ZZ-ZW pair in both 

Massachusetts and Maine populations of A. quadracus is one of the larger 

chromosome pairs in the karyotype (Chen and Reisman, 1970; Ross et aI., 2009). 

In addition, the karyotypes of the Connecticut and Massachusetts A. quadracus are 

similar, differing only in the presence of the large W chromosome in A. quadracus 

females from the Massachusetts population (Ross et al., 2009). Thus, the 

heteromorphic ZZ-ZW pair in the Massachusetts A. quadracus karyotype could 

correspond to one of the larger chromosome pairs in the Connecticut A. quadracus 

karyotype. Two of these larger chromosomes, Chr19 and Chr12, have previously 

been ruled out as the Massachusetts A. quadracus ZZ-ZW pair (Chapter 2) (Ross et 

al.,2009). However, the Connecticut A. quadracus karyotype contains several other 

large chromosomes, including Chr01, Chr02, Chr09, Chr13, and Chr20. These 

chromosomes should be targets for further studies of the ZZ-ZW sex chromosome 

pair in A. quadracus. 

Population differences in sex chromosomes and sex determination 

mechanisms are also found in other species of fish. Studies have documented sex 

chromosome diversity within species of poeciliid fish (Nanda et aI., 2000; Volff et al., 

2003; Schultheis et al., 2009) and within several species of neotropical fish, 
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including E. virescens (de Almeida-Toledo et aI., 2002; Henning et a/., 2011), 

Erythrinus erythrinus (Bertollo et al., 2004; Cioffi et al., 2010), and Hoplias 

mafabaricus (Bertollo et a/., 2000; Cioffi and Bertollo, 2010). Sex chromosome 

systems also differ among populations of other stickleback species. G. aculeatus 

from the Sea of Japan have a X1X1X2X2-X1X2Y sex chromosome system, which 

likely arose from the ancestral XX-XV sex chromosome system found in other G. 

aculeatus populations (Kitano et al., 2009). Future studies should reveal whether 

most A. quadracus populations have ZZ-ZW sex chromosomes, or if this species 

has a diverse array of sex determination mechanisms. 

Mechanisms Responsible for the Differences in Karyotype between G. 

aculeatus and A. quadracus 

Although G. aculeatus and A. quadracus diverged approximately 40 million 

years ago, my comparative FISH study has uncovered genomic rearrangements 

encompassing nearly half of the 21 G. acufeatus chromosome pairs. These 

rearrangements account for the two major karyotypic differences between these 

species: A. quadracus has a larger diploid number, coupled with a lower number of 

metacentric and submetacentric chromosomes, when compared to G. aculeatus 

(Table 3.4). 

The larger diploid number (46) in A. quadracus is explained by my finding that 

two G. aculeatus chromosome pairs (Chr04 and Chr07) correspond to four A. 

quadracus chromosome pairs. Examination of other stickleback species does not 

reveal whether the G. aculeatus or A. quadracus diploid number is more similar to 

the ancestral state in this family (Figure 1.1). The closest extant relative of G. 

aculeatus also has a diploid chromosome number of 42, as does a more distant 

relative, the ninespine stickleback, P. pungitius (Ocalewicz et aI., 2008; Ross et al., 

2009; Shapiro et aI., 2009; Ocalewicz et a/., 2011). However, many differences in 

chromosome morphology exist between the Gasterosteus species and P. pungitius 

(Ocalewicz et aI., 2008; Ross et a/., 2009; Ocalewicz et al., 2011). A recent report 

shows that P. pungitius has a higher number of metacentric and submetacentric 

chromosomes than G. acu/eatus (Ocalewicz et a/., 2011). However, since that study 



45 

did not compare specific chromosome pairs between species, it is not known if the 

chromosome pairs that differ in morphology between G. aculeatus and P. pungitius 

are identical to the chromosome pairs that differ between G. aculeatus and A. 

quadracus in my study. The closest extant relative of P. pungitius, the brook 

stickleback (Culaea inconstans), has the same diploid number as A. quadracus, but 

these two species also differ in karyotype (Chen and Reisman, 1970; Ross et al., 

2009). No published reports document the diploid chromosome number and 

chromosome morphology of the fifteenspine stickleback (Spinachia spinachia), 

which is the closest extant relative of A. quadracus (Kawahara et a/., 2009). Thus, 

we lack comprehensive karyotype data from a sufficient number of stickleback 

species and populations to know whether the karyotype of G. aculeatus or A. 

quadracus is the more ancestral for this family. 

Though the ancestral stickleback karyotype is unknown, my FISH screen has 

clarified some of the mechanisms that have shaped the A. quadracus and G. 

aculeatus karyotypes since they diverged. Robertsonian fusions are the joining of 

two acrocentric chromosomes at their centromeres (generating a single large 

metacentric or submetacentric chromosome), while centric fission (or dissociation) is 

the splitting of a single metacentric or submetacentric chromosome into two 

acrocentric chromosomes (White, 1978; Klinkhardt, 1998). Robertsonian fusions 

and centric fissions change the diploid chromosome number (2n) without affecting 

the chromosome arm number (NF) (Klinkhardt, 1998). While metacentric and 

submetacentric chromosomes make up less than one quarter of the A. quadracus 

karyotype, they comprise more than one third of the G. aculeatus karyotype (Table 

3.4). One factor that contributes to this difference is the separation of G. aculeatus 

Chr04 and Chr07 in the A. quadracus karyotype (Figure 3.1; Table 3.3). The 

differential state of both Chr04 and Chr07 in G. aculeatus and A. quadracus, and the 

fact that they are both acrocentric in A. quadracus, suggest that Robertsonian 

fusions and/or centric fissions have played roles in the evolution of stickleback 

karyotypes. These fusions may leave signatures in the form of interstitial telomeric 

sequences (lTSs) in the species with the derived chromosome state. A recent study 

of a G. aculeatus population from Poland failed to detect any ITSs by FISH; 
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however, it is possible that ITSs were eliminated, or remain in a copy number that is 

below the detection threshold for FISH (Ocalewicz et al., 2011). Thus, the ancestral 

state of Chr04 and Chr07 in the stickleback family is still unknown, and proper 

determination of the ancestral state will clarify whether fusions or fissions are 

responsible for these differences in karyotype. 

I also uncovered evidence for inversions involving at least eight 

chromosomes, based on differences between relative centromere position and/or 

BAC probe hybridization positions between G. aculeatus and A. quadracus. Six of 

these inversion events encompass the centromere, and five of those inversions alter 

the gross chromosome morphology between G. aculeatus and A. quadracus. In 

particular, three of these five inversions are on chromosomes that are metacentric or 

submetacentric in G. aculeatus and acrocentric or telocentric in A. quadracus, which 

is one factor that accounts for the lower NF in this species compared to G. aculeatus 

(Table 3.4). Future studies of chromosome morphology and relative probe 

hybridization positions in other stickleback species could further illuminate the role of 

pericentric inversions in the evolution of karyotypes across this family. 

Possible Role of Chromosome Rearrangements in Adaptation and Speciation 

My observations indicate that the major karyotypic differences between G. 

aculeatus and A. quadracus can be explained by chromosome inversion and either 

Robertsonian fusions or centric fissions. Such chromosome rearrangements might 

have been adaptive at some point during the evolution of these species. It has been 

suggested that chromosome rearrangements might playa role in both adaptation 

and speciation across diverse lineages (White, 1978; King, 1993; Ayala and Coluzzi, 

2005; Hoffmann and Rieseberg, 2008). 

My study shows that variation in Robertsonian fusion and centric fission is 

found between closely related species, which has also been reported for a number 

of mammalian species, including rodents, primates, deer, sheep, pigs, and horses 

(White, 1978; King, 1993; Searle, 1993). In particular, extensive variation in 

Robertsonian fusion and centric fission has been documented among different 

populations of the house mouse (Nachman and Searle, 1995; Britton-Davidian et a/., 
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2000) and the common shrew (Searle, 1993). Although variation in Robertsonian 

fusions among populations and species suggest that they might playa role in 

speciation (White, 1978; King, 1993), the mechanisms by which chromosome fusion 

and fission contribute to the formation of new species are still not well understood. 

I also found evidence for chromosomal inversions between stickleback 

species. Many studies document the presence of inversion polymorphisms within 

and between species, and inversions have also been proposed to contribute to 

adaptation and speciation (White, 1978; King, 1993; Ayala and Coluzzi, 2005; 

Hoffmann and Rieseberg, 2008). A recent study in the yellow monkeyflower 

(Mimulus guttatus) provides some of the first direct experimental evidence that a 

chromosomal inversion contributes to local adaptation and reproductive isolation 

(Lowry and Willis, 2010). Similar studies in sticklebacks could resolve whether the 

inversions we have identified in the A. quadracus and G. aculeatus karyotypes were 

adaptive or contributed to the divergence of species within this family. 
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Table 3.1. SAC clones used as FISH probes in this study. 
Chr Length (bp) BAC Color Location (bp) 
01 28,185,914 CH215-01F04 purple 808,402-984,867 

CH215-36H04 green 26,520,970-26,685,556 
02 23,295,652 CH215-14A06 purple 1,256,893-1,362,297 

CH215-51B03 green 22,208,609-22,374,157 
03 16,798,506 CH215-22E01 purple 904,453-1,069,729 

CH215-18023 green 14,811,263-14,979,917 
04 32,632,948 CH215-37J16 purple 1,324,641-1,484,145 

CH215-03K06 green 31,667,549-31,830,249 
05 12,251,397 CH215-10F03 purple 906,711-1,099,727 

CH215-15A11 green 11,086,429-11,245,223 
06 17,083,675 CH215-39G07 purple 1,009,878-1,175,833 

CH215-30J20 green 16,083,765-16,163,690 
07 27,937,443 CH215-24C20 purple 1,118,953-1,279,901 

CH215-50F19 green 26,759,364-26,929,269 
08 19,368,704 CH215-18K21 purple 1,728,015-1,897,447 

CH215-50P04 green 18,234,424-18,411,738 
09 20,249,479 CH215-09014 purple 1,205,121-1,367,430 

CH215-35K20 green 18,760,858-18,914,793 
10 15,657,440 CH215-32N20 purple 939,436-1,124,528 

CH215-13K03 green 14,608,763-14,740,402 
11 16,706,052 CH215-22E24 purple 1,328,616-1,481,096 

CH215-32F20 green 15,594,645-15,722,431 
12 18,401,067 CH215-35E14 purple 951,837-1,050,566 

CH215-19P17 green 17,405,092-17,588,100 
13 20,083,130 CH215-29N20 purple 1,278,281-1,129,621 

CH215-41J19 green 18,303,573-18,452,590 
14 15,246,461 CH215-50122 purple 1,523,325-1,641,391 

CH215-04P19 green 14,054,345-14,228,449 
15 16,198,764 CH215-42G09 purple 1,136,990-1,288,015 

CH215-47G02 green 14,910,768-15,091,535 
16 18,115,788 CH215-25D03 purple 5,417,553-5,595,117 

CH215-59023 green 15,244,265-15,412,230 
17 14,603,141 CH215-03L 14 purple 1,687,087-1,798,208 

CH215-25N10 green 13,556,132-13,679,389 
18 16,282,716 CH215-60K06 purple 2,420,846-2,594,158 

CH215-58L04 green 14,897,105-15,061,421 
19 20,240,660 CH215-23N18 purple 849,540-1,016,623 

CH215-16P13 green 4,756,773-4,923,988 
20 19,732,071 CH215-32D17 purple 16,730,161-16,890,598 

CH215-09B01 green 18,782,835-18,919,085 
21 11,717,487 CH215-11F14 purple 982,376-1,039,352 

CH215-34H24 green 10,642,915-10,791,824 
For each G. aculeatus chromosome, the total length in the G. aculeatus genome 
assembly (version BROAD 81, February 2006, 
http://www.ensembl.org/Gasterosteus_aculeatus/index.html) is given. The 
pseudocolor for each BAC clone is indicated, as are the positions of the ends of 
each BAC clone in the respective chromosome assembly. 



Table 3.2. Number of individual samples and pools analyzed by FISH in A. quadracus and G. aculeatus and 
karyotyped in A. quadracus. 

FISH anal ses 
Total pools Individuals/ Metaphases Total pools 
anal zed pool anal zed/chr anal zed 

A. quadracus 
8 12 (9-17) 5 (3-10) 3 11 (7-15) 6 

Female 
A. quadracus 

7 8 (7-11) 3 (3-5) 12 8 (6-11) 5 
Male 
G. aculeatus 

5 21 (15-36) 3 (3-4) 1 Not applicable Not applicable Not applicable 
Male 
We pooled individual male and female A. quadracus and male G. aculeatus individuals to make metaphase spreads for 
FISH analysis (Figure 3.1; Figure 3.2; Table 3.3); we pooled individual male and female A. quadracus individuals to make 
karyograms (Figure 3.3; Table 3.4). Here I show the number of pools used for FISH and karyotype experiments, the 
mean number (range in parenthesis) of individuals per pool, and the mean number (range in parenthesis) of metaphases 
analyzed for each chromosome (FISH screen) or total number of metaphases analyzed for each experiment (karyotypes). .t>

eo 



Table 3.3. Chromosome morphology and evidence for chromosome rearrangements differentiating the 
chromosomes of G. acu/eatus and A. guadracus. 
G. aculeatus Mean arm Chromosome A. quadracus Mean arm Chromosome Proposed 
chromosome ratio {L:S} moq~hology: chromosome ratio {L:S} mor~hology: rearrangement 
Chr01 1.90 sUbmetacentric Chr01 3.33 acrocentric Pericentric inversion 
Chr02 5.28 acrocentric Chr02 4.30 acrocentric 
Chr03 4.67 acrocentric Chr03 5.10 acrocentric Pericentric inversion 
Chr04 2.15 submetacentric Chr04a 3.39 acrocentric Fission/fusion 

Chr04b 5.04 acrocentric 
Chr05 2.13 submetacentric Chr05 1.98 submetacentric Paracentric inversion 
Chr06 4.38 acrocentric Chr06 5.92 acrocentric Paracentric inversion 
Chr07 1.23 metacentric Chr07a 4.88 acrocentric Fission/fusion 

Chr07b 6.52 acrocentric 
Chr08 9.17 telocentric Chr08 1.32 metacentric Pericentric inversion 
Chr09 6.04 acrocentric Chr09 3.41 acrocentric 
Chr10 13.68 telocentric Chr10 3.48 acrocentric (J'I 

Chr11 5.37 acrocentric Chr11 11.65 telocentric 0 

Chr12 5.51 acrocentric Chr12 3.77 acrocentric 
Chr13 5.74 acrocentric Chr13 3.08 acrocentric 
Chr14 1.49 meta centric Chr14 1.36 meta centric 
Chr15 9.97 telocentric Chr15 3.06 acrocentric 
Chr16 9.73 telocentric Chr16 8.12 telocentric 
Chr17 1.42 metacentric Chr17 3.23 acrocentric Pericentric inversion 
Chr18 6.19 acrocentric Chr18 3.52 acrocentric 
Chr19 (X) 2.67 submetacentric Chr19 2.44 submetacentric 
Chr20 9.88 telocentric Chr20 1.36 meta centric Pericentric inversion 
Chr21 1.39 meta centric Chr21 3.36 acrocentric Pericentric inversion 
Based on the chromosome morphology, relative centromere position, and BAC probe hybridization positions for each 
chromosome in our FISH screen, I list the types of chromosome rearrangements that could explain the observed 
differences between the G. aculeatus and A. quadracus karyotypes. 



Table 3.4. Major features of the karyotypes of G. aCLJJeC!tu~ al}d ~. quadracus. 
Species Sex 2n Metacentric Submetacentric Acrocentric 
G. aculeatus Female 42 8 6+2X 16 

Male 42 8+Y 6+X 16 
A. quadracus Female 46 6 4 32 

Male 46 6 4 32 

Telocentric 
10 
10 
4 
4 

NF 
58 
58 
56 
56 

2n is the diploid chromosome number. NF ('nombre fondamentaf) is the number of major chromosome arms in a 
karyotype; it does not count the short arms of acrocentric and telocentric chromosomes (Matthey, 1949; White, 1978; 
Klinkhardt, 1998). We inferred karyotype features for G. aculeatus females based on the absence of the metacentric Y 
and the presence of a second submetacentric X chromosome (Ross and Peichel, 2008). 
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Two-color, two-probe FISH images are shown for the 10 G. aculeatus chromosomes that show visible evidence for chromosome rearrangement. 
Pairs of homologs from individual metaphase spreads of G. aculeatus males and A. quadracus females are shown. Chromosomes are arranged 
by the type of chromosome rearrangement: chromosome fission/fusion (2 chromosome pairs), paracentric inversion (2 chromosome pairs), and 
pericentric inversion (6 chromosome pairs). White arrowheads indicate the position of the centromere. Figure 3.2 shows the FISH images of the 
G. aculeatus and A. quadracus chromosomes that show identical morphology and hybridization patterns between species. 
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Figure 3.2. No major differences in chromosome morphology or probe hybridization exist between 11 G. 
aculeatus and A. auadracus chromosome 

Two-color, two-probe FISH images are shown for both members of each chromosome pair from metaphase spreads of G. aculeatus males and A. 
quadracus females. White arrowheads indicate the position of the centromere. Figure 3.1 shows the FISH images of G. aculeatus and A. 
quadracus chromosome pairs that show evidence of rearrangements between these species. One FISH probe for Chr19 does not hybridize to the 
metacentric Y chromosome, most likely due to a large deletion on the Y chromosome in G. aculeatus (Ross and Peichel, 2008). 
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Figure 3.3. Karyograms of an A. quadracus female (upper panel) and an A. quadracus male (lower panel) from 
the West River in New Haven. Connecticut. 
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CHAPTER FOUR 

Genes Expressed During Early Gonadal Differentiation in the Threespine 

Stickleback, Gasterosteus aculeatus 

SUMMARY 

Despite the diversity of sex chromosome systems in the stickleback family, we do 

not know how many sex determination genes have evolved in sticklebacks. In 

threespine sticklebacks (Gasterosteus aculeatus), the sex determination gene 

resides on the large Y chromosome in males. To identify this gene, I designed and 

executed a high-throughput next generation cDNA sequencing screen to identify 

genes that are differentially expressed between male and female threespine 

sticklebacks (Gasterosteus acu/eatus) just as sexual differentiation begins. Male

biased genes included genes from the Y chromosome; identifying such genes will 

aid in the search for the G. aculeatus sex determination gene. I used real-time 

quantitative polymerase chain reaction (qPCR) to confirm the differential expression 

of 2 male-biased genes and 6 female-biased genes. These genes may represent 

some of the first genes to initiate male and female-specific developmental pathways. 

I also confirmed previous reports that there is no global dosage compensation 

mechanism in G. aculeatus to equalize dosage of most X chromosome genes 

between females and males. 

In this large and complex screen, I relied on the aid and advice of many 

collaborators. Martin Morgan and Jerry Davison performed the genome alignments 

that permitted me to identify differentially expressed autosomal and X chromosome 

genes. Matthew Fitzgibbon devised and executed the protocol to identify expressed 

Y chromosome genes. Reyes Balcells genotyped over 1,000 G. aculeatus embryos 

and larvae to identify males and females. Finally, Anna Greenwood trained me in 

qPCR protocols and taught me the statistical concepts required to identify 

differentially expressed genes by RNA-Seq and confirm their expression by qPCR. 
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INTRODUCTION 

Stickleback Sex Determination Genes 

Sex chromosome systems have evolved at least three times in the 

stickleback family (peichel et al., 2004; Ross et aI., 2009; Shapiro et al., 2009). 

However, we do not know if sex determination genes arose independently to 

establish each sex chromosome system, or if the same ancestral sex determination 

gene has transposed to different sex chromosome systems. To eliminate one of 

these hypotheses, the most straightforward approach is to first identify the sex 

determination gene in one stickleback species, and then see if it is present in the 

others. 

The threespine stickleback, Gasterosteus aculeatus is the most logical 

stickleback species in which to look for a sex determination gene. In this species, 

chromosome 19 is a heteromorphic XX-XV sex chromosome pair (peichel et aI., 

2004; Ross and Peichel, 2008). Furthermore, a number of genetic and genomic 

tools have been developed for this species (Kingsley et aI., 2004; Kingsley and 

Peichel,2007). A female (XX) G. aculeatus genome has been sequenced, and the 

sequence of the Y chromosome should be completed within the next year. In 

addition, protocols to make transgenic G. aculeatus have been developed (Hoseman 

et al., 2004; Chan et al., 2010), which will be required to test candidate sex 

determination genes. Thus, the number of tools developed for G. aculeatus make 

this species the most practical choice in which to search for a sex determination 

gene. 

Sex Determination in G. aculeatus 

In the 1950s, stickleback researcher Har Swarup generated triploid G. 

aculeatus. He used cold-shock treatments of unfertilized G. aculeatus eggs to force 

reabsorption of the second polar body and then fertilized those diploid eggs with 

sperm from males (Swarup, 1959a). Swarup was unaware that G. aculeatus had a 

sex chromosome system. However, based on his methods, we can assume that his 

triploid G. aculeatus had a sex chromosome compliment of either XXX or XXV, 

based on whether or not the diploid eggs were fertilized with X or V-bearing sperm. 
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Though Swarup did not examine sex determination and sexual differentiation in the 

triploid G. aculeatus, he did obtain triploid G. aculeatus of both sexes (Swarup, 

1959b). In addition, he did not mention any intersex or ambiguous sexual 

phenotypes (Swarup, 1959a; Swarup, 1959b), which could be expected if the G. 

aculeatus sex determination gene resided on the X chromosome and had a dosage 

effect on sex determination and sexual differentiation. Thus, based on Har Swarup's 

experiments with triploid G. aculeatus, we believe the sex determination gene in this 

species is a genetically dominant factor on the Y chromosome. 

The G. aculeatus Y chromosome is nearly identical in size to its X 

chromosome counterpart, based on metaphase chromosome morphology (Ross and 

Peichel, 2008). However, we do not know the physical size of the Y chromosome, 

since it has not been completely sequenced. The X chromosome is approximately 

20Mbp in length, and the X and Y do not recombine over approximately 16Mbp of X 

chromosome length (peichel et al., 2004; Ross and Peichel, 2008). The relatively 

small (4Mbp) pseudo-autosomal region accounts for all recombination between the 

X and the Y (peichel et al., 2004; Ross and Peichel, 2008). The sex determination 

gene likely resides in the male-specific region of the Y chromosome. We know that 

at least three inversions have occurred in this region, as well as one deletion event 

(Ross and Peichel, 2008). This deletion event (6Mbp) was large enough to eliminate 

hundreds of genes, including a copy of the aromatase gene Cyp19a1 (peichel, 

unpublished). Small regions of the male-specific region on the Y chromosome were 

previously sequenced and found to contain Y loci that have diverged in sequence 

from their homologues on the X, as well as multiple transposable elements (peichel 

et aI., 2004). We do not know the frequency with which genes on the Y chromosome 

have degenerated to the point of becoming pseudogenes. Some of these diverged 

genes on the Y include "housekeeping" genes, such as the isocitrate dehydrogenase 

gene Idh, which may still have a functional Y allele (Withler et al., 1986; Peichel et 

al.,2004). Other genes include proteins implicated in gonad development and 

hormone synthesis, such as 17f5HSO (17[1 hydroxysteroid dehydrogenase) and WT1 

(Wilms' tumor protein 1). However, limited analyses of these genes did not uncover 

evidence to suggest that they are the G. acu/eatus sex determination gene (peichel 
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and Mills, unpublished). The large size of the non-recombining male-specific region, 

coupled with the lack of a complete Y chromosome sequence, made the search for 

the sex determination gene on the Y chromosome itself impractical. 

Rather than locating the G. aculeatus sex determination gene on the Y 

chromosome, my approach has been to identify genes expressed when and where 

the sex determination gene should be expressed. The sex determination gene is 

most likely expressed prior to the first sign of morphological differentiation between 

the sexes. The earliest reported sign of morphological differentiation in G. aculeatus 

is an increase in primordial germ cell number in females, but not males (Lewis et al., 

2008). This is seen by late stage 27 or early stage 28, based on Swarup's 

developmental stages for G. aculeatus (Swarup, 1958; Lewis et aI., 2008). Thus, 

the sex determination gene is likely expressed prior to this stage and acts on 

downstream target genes to cause this morphological change between the sexes. 

In order to identify the sex determination gene in sticklebacks, I believe it is 

important to characterize gene expression patterns between females and males 

prior to the morphological differentiation of the sexes at late stage 27 or early stage 

28. This type of broad-scope approach will allow us to identify putative sex 

determination genes; i.e. Y chromosome genes that are expressed in male G. 

aculeatus (including the sex determination gene) prior to the first signs of 

morphological divergence between males and females. But, this approach will also 

let us address another fundamental question in the evolution of sexual differentiation 

pathways: whether or not genes in sexual differentiation pathways are conserved 

between G. aculeatus and other vertebrate species. These conserved genes could 

include genes and gene families implicated in gonad differentiation, hormone 

synthesis, and the development of secondary sexual characteristics in other 

organisms (Morrish and Sinclair, 2002; Haag and Doty, 2005). 

I have chosen to use high-throughput "next generation" sequencing of 

transcripts (RNA-Seq) to characterize female and male G. aculeatus gene 

expression patterns (Wang et al., 2009; Costa et al., 2010). RNA-Seq will yield short 

sequences ("reads") from both female and male tissue from any developmental 

stage of my choosing. Since morphological differentiation between the sexes begins 
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by at least late stage 27 or early stage 28, I chose to characterize gene expression 

patterns between female and male G. aculeatus at the three latest stages of pre

hatching embryonic development (stages 22, 23, and 24), as well as the earliest 

stage of post-hatching larval development (stage 26) (Swarup, 1958). Stage 25 is 

the act of hatching and is not included in this screen due to the brief time it 

encompasses in the total lifespan of G. aculeatus; other stages of life are defined by 

a specific series of morphological, temporal, and behavior changes in individuals 

(Swarup, 1958). 

By using RNA-Seq to characterize gene expression patterns between female 

and male G. aculeatus individuals, ! had two broad goals aimed at understanding the 

evolution of sexual differentiation pathways in this species. First, I wanted to identify 

all genes that are differentially expressed between females and males during those 

late embryonic (stages 22-24) and early larval (stage 26) developmental periods. 

Second, I wanted to identify genes from the Y chromosome that are expressed in 

males during stages 22, 23, 24, and 26. These Y chromosome genes are candidate 

sex determination genes, and their identification will bring us closer to identifying the 

genetic mechanism that G. aculeatus uses to initiate sex-specific developmental 

pathways. 

MATERIALS AND METHODS 

Specimen Collection and Crosses 

All procedures were approved by the Fred Hutchinson Cancer Research 

Center Institutional Animal Care and Use Committee (protocol 1575). In March 2009 

and May and June 2010, adult male and female G. aculeatus were collected from 

two locations in Lake Washington: Union Bay in Seattle, Washington and the Mercer 

Slough Nature Park in Bellevue, Washington (Washington permits 09-038, 10-049). 

These fish were housed in 110L aquarium tanks (75cm length x 30cm depth x 46cm 

height) in summer lighting conditions (16h light: 8h dark) at approximately 16°C in 

0.35% saltwater (3.5g/L Instant Ocean salt (Aquarium Systems, Mentor, Ohio, USA); 

O.4mLlL NaHC03). Fish were fed live brine shrimp nauplii twice daily. 
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Crosses were generated in the laboratory by in vitro fertilization. Embryos 

and larvae were grown in 1 OOmm x 15mm petri dishes in the same water and 

climate conditions as adult fish. G. aculeatus larvae did not need to be fed, as they 

were euthanized (below) before the yolk sac had been absorbed. 

Tissue Collection 

Embryos and larvae were euthanized in 0.025% tricaine methanesulfonate 

(MS-222). Embryos and larvae were examined to determine developmental stage 

(Swarup, 1958). Embryos were dechorionated using two pairs of fine-tipped 

forceps. Both stage and total body length (from the tip of the head to the tip of the 

tail) were recorded for all embryos and larvae. The posterior section of the body 

where the primordial gonad is found (Figure 4.1) was removed, placed into a 96-well 

plate, flash frozen over a bath of dry ice and 95% ethanol, and stored at -80°C for 

RNA extraction. The rest of the body was stored at room temperature in 95% 

ethanol for genomic DNA extraction. Tissues from all individuals were stored 

separately until the sex of each fish was determined by Idh locus genotyping 

(peichel et aI., 2004). 

Genomic DNA Extraction and Idh Locus Genotyping 

Genomic DNA was extracted and purified from tissue stored in 95% ethanol 

at room temperature using procedures already described in this dissertation (see 

"Materials and Methods" section of Chapter 2). PCR-based genotyping of the Idh 

locus was performed as previously described to determine the sex of each individual 

embryo or larvae (peichel et al., 2004). 

RNA Extraction 

Tissue samples from several individuals were pooled by stage and sex for 

total RNA extraction for both RNA-Seq and qPCR (Table 4.1). Tissue samples were 

homogenized using a Tissuemiser Homogenizer (Fisher Scientific International, 

Hampton, New Hampshire, USA) in the TRlzol reagent (Invitrogen, Carlsbad, 

California, USA). One milliliter of TRlzol was used for every 50-1 OOmg of tissue. 



61 

Total RNA was purified by chloroform extraction (1:5 chloroform:TRlzol) and 

isopropanol precipitation (1:2 isopropanol:TRlzol), before being resuspended in 

20IJL deionized water. Total RNA samples used for RNA-Seq (Table 4.1) were 

taken through an additional ethanol precipitation and then resuspended in 20IJL 

deionized water. A Bioanalyzer 2100 (with the RNA 6000 Nano kit) was used to 

confirm RNA integrity and quantify RNA (Agilent Technologies, Santa Clara, 

California, USA). 

Generation of eDNA Fragment Library 

Four separate cDNA fragment libraries (two male and two female) were 

constructed (Figure 4.2) for two independent RNA-Seq high-throughput sequencing 

experiments. For each library, 1lJg of total RNA from each of four developmental 

stages (22,23,24, and 26) was combined; the RNA sample from each stage was 

made by pooling multiple individuals (Table 4.1). Each cDNA fragment library was 

made from an independent set of RNA samples. The mRNA-Seq sample 

preparation kit (lilumina, San Diego, California, USA) was used according to the 

manufacturer's instructions to generate cDNA fragment libraries with a target length 

of 300bp (including adapters). Following chemical fragmentation of RNA samples, 

cDNA synthesis was done using SuperScript II Reverse Transcriptase (Invitrogen, 

Carlsbad, California, USA). PCR purification steps in the mRNA-Seq sample 

preparation protocol were carried out using a QIAquick PCR purification kit or a 

MinElute PCR purification kit (Qiagen, Hilden, North Rhine-Westphalia, Germany), 

and a QIAquick gel extraction kit was used for the single gel purification step 

(Qiagen, Hilden, North Rhine-Westphalia, Germany). Each cDNA fragment library 

was quantified using the High Sensitivity DNA kit on a Bioanalyzer 2100 (Agilent 

Technologies, Santa Clara, California, USA). 

RNA-Seq 

Single-end high-throughput sequencing of each cDNA library was carried out 

on a Genome Analyzer II (Illumina, San Diego, California, USA) for 72 cycles, 

yielding reads of 80-1 OObp. Technical replicates of each library were sequenced on 
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the same flow cell, while biological replicates (i.e. the two male libraries or the two 

female libraries) were sequenced on different flow cells (Table 4.2). 

Analyzing RNA-Seq Datasets to Identify Differentially Expressed Genes 

The total number of sequence fragments ("reads") obtained by RNA-Seq for 

each cDNA fragment library (including technical replicates) are shown in Table 4.2. 

The Burrows-Wheeler Aligner (BWA) tool (U and Durbin, 2009) was used to align 

reads to the G. aculeatus female (XX) genome (BROAD S1 assembly, February 

2006, available at http://www.ensembl.org/Gasterosteus_aculeatus/index.html) 

(Table 4.2; Figure 4.3). 

The BWA alignment data were used to identify autosomal and X chromosome 

genes that are differentially expressed between the sexes in each independent 

RNA-Seq experiment (Table 4.2). Data from all samples were normalized to 

account for the different numbers of total reads obtained (reads per kilobase of exon 

model, per million mapped reads; RPKM) (Mortazavi et aI., 2008). Then, for each 

predicted gene in the G. aculeatus female genome, the female:male expression ratio 

was calculated based on the adjusted RPKM value for each sex. Once log

transformed, the Z-score and significance (p) values for each gene were calculated 

to determine which genes showed a significant expression difference (p<0.05) 

between the sexes (Cheadle et al., 2003). 

Analyzing RNA-Seq Datasets to Identify Expressed Y Chromosome Genes 

Reads were aligned to the G. aculeatus female (XX) genome (BROAD S1 

assembly, February 2006, available at 

http://www.ensembl.org/Gasterosteus_aculeatus/index.html) and 27 bacterial 

artificial chromosome (BAC) sequences from the ongoing G. aculeatus Y 

chromosome sequencing (Table 4.3) project using Bowtie and Tophat (Trapnell et 

al., 2009), while transcripts were assembled de novo using Cufflinks (Trapnell et a/. , 

2010). Velvet was then used to assemble reads that aligned to Y chromosome 

BACs or that did not align to anything into longer contiguous sequences (Zerbino 

and Birney, 2008). Bowtie was used to re-align these contiguous sequences to the 
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G. aculeatus female genome and the 27 Y chromosome BACs. In addition, the 

Cufflinks-assembled de novo transcripts and the Velvet-assembled contiguous 

sequences were used in a BLAST against the NCBI non-redundant protein database 

to identify putative homologues of these genes (Figure 4.3). These data were used 

to identify potential Y chromosome genes that are expressed in male G. acufeatus. 

RNA Samples for qPCR 

Real-time quantitative PCR (qPCR) was used to validate RNA-Seq 

expression data. The RNA templates chosen were 31 biological replicates from the 

following G. aculeatus developmental stages (Table 4.1): 8 samples of "pre

hatching" females (stages 22-24), 7 samples of "pre-hatching" males (stages 22-24), 

8 samples of "post-hatching" females (stage 26), and 8 samples of "post-hatching" 

males (stage 26). These samples will be known as "test templates" in future 

sections. None of these samples had been used previously in the construction of 

cDNA fragment libraries for RNA-Seq. 

In addition to these 31 test templates, a mixture of RNA samples was 

prepared for the standard curve qPCR reactions. The standard curve sample 

consisted of equal amounts of RNA from males and females from the four 

developmental stages (22, 23, 24, and 26) used in construction of the cDNA 

fragment libraries for RNA-Seq. The standard curve sample consisted of RNA from 

individuals that had also been used in the construction of cDNA fragment libraries for 

RNA-Seq. 

eDNA Synthesis for qPCR 

The RNA test templates and standard curve sample were treated with 

amplification-grade DNasel (Invitrogen, Carlsbad, California, USA) according to the 

manufacturer's instructions. First-strand cDNA synthesis was carried out using the 

SuperScript III First-strand Synthesis System for RT-PCR (Invitrogen, Carlsbad, 

California, USA) according to the manufacturer's instructions. 

A control cDNA synthesis reaction was also prepared, using RNA mixed in 

equal portions from one stage 26 male individual and one stage 26 female 
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individual. For this cDNA synthesis, the sample was not treated with reverse 

transcriptase, and a corresponding volume of deionized water was added instead. 

Aside from that deviation, no other steps in the DNasel treatment and first-strand 

cDNA synthesis were altered. This control sample was used to assess whether the 

DNasel treatment was effective at clearing genomic DNA from the sample prior to 

first-strand cDNA synthesis. 

Quantitative peR 

Real-time quantitative PCR (qPCR) with SYBR Green Dye (Applied 

Biosystems, Carlsbad, California, USA) was used to validate expression differences 

between males and females for 10 genes (Table 4.4). Reactions were executed on 

a 7900HT Fast Real-Time PCR System (Applied Biosystems, Carlsbad, California, 

USA). For the 31 test samples, the 1 OjJL reactions consisted of 5ng cDNA (RNA 

equivalent), 1X SYBR Green PCR Master Mix (Applied Biosystems, Carlsbad, 

California, USA), and 5pmol each of the forward and reverse oligonucleotides (Table 

4.4). Standard curve reactions were carried out under the same reaction conditions, 

but in a dilution series of 50ng, 25ng, 5ng, 0.5ng, and 0.05ng of cDNA template 

(RNA equivalent). Two control reactions were also used: one with deionized water 

substituted for template, and the other is the cDNA synthesis reaction in which no 

reverse transcriptase was used (see preceding "cDNA Synthesis for qPCR" section). 

Triplicate reactions were performed for every test template, negative control, and 

standard curve sample for all oligonucleotide pairs. 

All qPCR reactions were carried out under the following conditions: 50°C for 2 

minutes, 95°C for 10 minutes, and 40 cycles of a two-temperature fluctuation (95°C 

for 15 seconds, 60°C for 1 minute). An additional ramp cycle of 95°C for 15 

seconds, 60°C for 15 seconds, and back to 95°C for 15 seconds was used to 

calculate melting curves for each oligonucleotide pair. 

Cycle threshold (CT) values were exported from Sequence Detection 

Systems 2.3 software for the 7900HT Fast Real-Time PCR System (Applied 

Biosystems, Carlsbad, California, USA), and data were analyzed in Excel 2008 for 

Mac, version 12.2.8 (Microsoft, Redmond, Washington, USA). Since triplicate 
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reactions were done for all templates, the mean CT value was calculated for each 

template. The mean CT values for the six standard curve samples were used to 

calculate the real-time PCR efficiency (E) of each oligonucleotide pair, 

E = 10(-1/Slope) 

where "Slope" is the slope of the best-fit line where mean CT for the standard curve 

templates are graphed as a function of cDNA input into each reaction (Pfaffl, 2001). 

E values were then used to calculate the relative expression of each gene for 

each test template, normalized to the expression of the control gene EEF1 B2. 

EEF1B2 was chosen due to its stable expression between sexes by RNA-Seq (data 

not shown) and qPCR (Figure 4.4). In addition, other elongation factor proteins have 

previously been used as stable reference genes for qPCR in G. aculeatus (Hibbeler 

et al., 2008). Gene expression values, normalized by EEF1B2, were calculated for 

each test template using the formula 

Normalized expression = EEEF1B2CT(EEF1B2)/Egene CT(gene) X 100 

where Egene and EEEF1B2 are the respective efficiency values for the gene in question 

and the reference gene EEF1 B2 (both of which were calculated above using the 

standard curve samples), and CT(gene) and CT(EEF1 B2) are the respective mean 

cycle threshold values of the test sample for gene in question and EEF1 B2 (Pfaffl, 

2001 ). 

The relative expression values of each gene for each test template were then 

exported into PASWStatistics 18.0 (SPSS/IBM, Armonk, New York, USA). 

Independent samples t-tests were used to identify genes that showed a significant 

difference in expression (p<0.05) by sex or age. A two-way analysis of variance 

(ANOVA), followed by least-significant difference post hoc tests, was used to identify 

significant differences in gene expression by both sex and age. 

RESULTS 

Differentially Expressed Genes in G. aculeatus 

I performed high-throughput next··generation sequencing of two separate 

cDNA fragment libraries for both female and male G. aculeatus (RNA-Seq). We 

independently aligned all reads from both sets of biological replicates (two sets of 
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reads from males, and two sets of reads from females) to the G. acufeatus female 

(XX) genome using BWA (Table 4.2; Figure 4.3). I compared sets of differentially 

expressed genes between both biological replicates to determine which genes were 

male-biased (p<0.05) in both replicates and which genes were female-biased 

(p<0.05) in both replicates. In this comparison, I discarded any gene less than 

220bp and any gene with less than 10 reads from both sexes aligning to it. 

Sixty-six male-based genes (p<0.05) were common to both biological 

replicates (see Appendix). I chose four of these genes to confirm their male-biased 

expression by qPCR (Table 4.4). For one of these genes, PKD2, qPCR did not 

reveal any significant difference in expression level between males and females, or 

between stickleback embryos (stages 22-24) and larvae (stage 26) (Figure 4.5). 

The putative transcription factor GTF21RD2 showed a significant male bias in 

expression (p<0.05). Although there is no difference in expression between male 

and female embryos, GTF21RD2 expression decreases significantly in female larvae 

after hatching (Figure 4.5). For the Buster3 transposase-like gene C50rf54 , qPCR 

confirmed a significant male bias in expression after hatching (stage 26) (Figure 

4.5). But, the respective qPCR efficiencies for the C50rf54 and PKD2 

oligonucleotide pairs fell outside of our quality control standards (1.9<E<2.1) (Table 

4.4), which are similar to standards used in other qPCR verifications of RNA-Seq 

data (Nagalakshmi et al., 2008). Thus, i consider qPCR results for these two genes 

to be preliminary, and subject to confirmation by future independent investigations. 

For the gene PAQR4, qPCR did not confirm male-biased expression. Instead, 

PAQR4 showed a significant (p<0.05) female bias in expression after hatching 

(stage 26) (Figure 4.5). 

I uncovered 301 genes that showed a consistent and significant (p<0.05) 

female expression bias in both biological replicates by RNA-Seq (see Appendix). Of 

those 301 genes, 275 reside on the X chromosome (Chr19). These 275 genes were 

expressed at levels approximately two-fold higher in females compared to males for 

both RNA-Seq experiments; I calculated a mean female:male expression bias of 

2.1144 in one RNA-Seq experiment (median = 2.0341), and 2.0464 in the second 

RNA-Seq experiment (median = 1.9676). This two-fold female bias among X 
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chromosome genes likely reflects a lack of dosage compensation in G. aculeatus, in 

agreement with previous data (Leder et al., 2010). A single X chromosome gene 

CCOC34 showed a female bias much greater than the mean of all other X 

chromosome genes for both RNA-Seq experiments (3.4829 in one experiment, and 

2.7695 in the other). I confirmed the female bias of CCOC34 expression (regardless 

of age) by qPCR (p<0.001), though CCOC34 also showed a significant decrease in 

expression in G. aculeatus larvae (stage 26) compared to stickleback embryos 

(stages 22-26) (Figure 4.6). 

Twenty-six autosomal genes showed a consistent and significant (p<0.05) 

female bias in expression in both RNA-Seq experiments (see Appendix). I selected 

five genes to confirm their significant difference by qPCR (Table 4.4). Although I 

found no significant expression differences between males and females for the gene 

OVGP1 by qPCR, there was a significant increase in expression between males 

after hatching (Figure 4.7). I confirmed a female bias in expression regardless of 

age for genes ZAR1, EPS8L2, and MYCBPAP, but not for ZFP106 (Figure 4.6; 

Figure 4.7). However, ZFP106 did show a significant female bias in expression 

among embryos (stages 22-24), while expression levels were lower among larvae 

(stage 26) of both sexes (Figure 4.6). I consider MYCBPAP qPCR results 

preliminary, since the qPCR efficiency (E) of the MYCBPAP oligonucleotides fell 

outside of my quality control standards (1.9<E<2.1) (Table 4.4). Thus, by qPCR, I 

confirmed male-biased expression for 2 out of 4 genes identified by RNA-Seq, and 

confirmed female-biased for 5 out of 6 female-biased genes. 

Expressed Y Chromosome Genes in G. aculeatus 

My colleague Matt Fitzgibbon took two parallel approaches to identify RNA

Seq reads from Y chromosome genes. Both approaches made use of the de novo 

transcript assembly tools. In his first approach, Matt used Cufflinks (Trapnell et al., 

2010) to assemble longer transcript sequences from reads from males or females 

that aligned to the 27 Y chromosome BACs (Table 4.3) by Bowtie and Tophat. In his 

second approach, Matt used Velvet (Zerbino and Birney, 2008) to assemble 

contiguous sequences among reads that did not align to either the G. aculeatus 
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female genome or the 27 Y BAC sequences. He then aligned these Velvet

assembled contigs to the G. aculeatus genome and the Y chromosome BACs. 

Finally, he performed a BLAST search of all Velvet and Cufflinks-assembled 

contiguous sequences against the NCB I non-redundant protein database. 

Matt's de novo transcript assembly yielded 10,278 new contiguous 

sequences (contigs) from females and 12,370 new contigs from males. Among 

female contigs, 7,783 out of 10,278 contigs (75.72%) had BLAST results that 

returned at least one homologous sequence, as did 9,552 out of 12,370 (77.22%) of 

male contigs (data not shown). Only 137 female contigs aligned to Y chromosome 

BAC sequences (including 119 contigs with BLAST results), while 653 male contigs 

(555 with BLAST results) aligned to Y chromosome BAC sequences (data not 

shown). 

DISCUSSION 

Conservation of Sexual Differentiation Genes in G. aculeatus 

To reveal which genes are differentially expressed between the sexes during 

the first steps of sexual differentiation in G. aculeatus, I chose to sequence cDNA 

fragment libraries from mRNA derived from midsection tissue of embryos and larvae 

(Figure 4.1). Female and male G. aculeatus are morphologically distinguishable by 

stages 27 and 28 (Lewis et a/., 2008), and possibly as soon as late stage 26 

(Bruner, unpublished). This first sign of morphological differentiation between the 

sexes is an increase in primordial germ cell number in females (Lewis et aI., 2008). 

However, a burst of sexually dimorphic gene expression likely precedes 

morphological differentiation of the sexes (Sekido and Lovell-Badge, 2009; Shibata 

et a/., 2010; Wang et aI., 2010; Okubo et a/., 2011). This sexually dimorphic gene 

expression should include the elusive Y-linked sex determination gene, as well as its 

immediate downstream gene targets. I designed this screen to investigate the gene 

expression patterns of sticklebacks in their late embryonic stages (22, 23, and 24) 

and early larval stage (26). 

This study reveals that there are sexually dimorphic genes in G. aculeatus in 

late embryonic and early larval stages. These include both male-biased and female-
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biased genes on the autosomes and the sex chromosomes. However, they do not 

include genes from conserved sexual differentiation pathways in other vertebrates. 

For example, I saw no difference in expression between the sexes for genes such as 

DMRT1, SOX9a, SOX9b, Cyp19a, or DAX1 (Morrish and Sinclair, 2002; Piprek, 

2009) in G. aculeatus embryos and larvae (data not shown). However, the 

developing gonad is a relatively small portion of the tissue sample I used for RNA

Seq and qPCR (Figure 4.1). Thus, it is possible that any sexually dimorphic gene 

expression patterns in the gonad may be masked by gene expression patterns from 

surrounding somatic tissues. Future studies could attempt to address this point by 

selecting a smaller tissue target for RNA-Seq, preferably just the developing gonad. 

This approach may also identify the G. aculeatus sex determination gene once a 

complete Y chromosome sequence is available. 

Sexually Dimorphic Gene Expression in G. aculeatus 

By RNA-Seq and qPCR, I have identified GTF21RD2 as an early male-biased 

gene in G. aculeatus. There is no significant difference in expression between male 

and females during the late embryonic stages of development. But, by the early 

larval stage, GTF21RD2 expression is significantly lower in females compared to 

males (Figure 4.5). GTF21RD2 is a putative transcriptional regulator and is 

conserved among vertebrates; in mammals, it is widely expressed in developing 

embryos (Enkhmandakh et a/., 2004; Makeyev et al., 2004). However, no reports to 

date indicate a role for this gene in sexual differentiation. Though GTF21RD2 is 

autosomal, there is evidence that a copy of this gene may have also transposed to 

the Y chromosome (peichel, unpublished). This transposition, if true, may help 

explain the gene's male-biased detection by qPCR and RNA-Seq. Future studies 

should investigate whether the larval male-biased expression of GTF21RD2 is 

confined to the developing gonad. If so, that may indicate a role for this gene in 

sexual differentiation in G. acu/eatus, and possibly other vertebrates. 

My qPCR experiments have shown that five other genes are likely female

biased in late embryonic or larval stages. ZAR1 orthologues may have roles in germ 

cell development in mammals (Uzbekova et aI., 2006), and in G. aculeatus its 
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expression is significantly higher in females than males. The four remaining genes 

show similar patterns of expression both by age and sex. Females in the late 

embryonic stages show significantly higher levels of PAQR4, CCDC34, ZFP106, and 

EPS8L2 than males. However, by early larval development, expression levels of 

PAQR4 and ZFP106 equalize between the sexes (Figure 4.5; Figure 4.6). In 

addition, expression of the preliminary female-biased gene MYCBPAP follows a 

similar pattern to ZFP106 and PAQR4. For CCDC34 and EPS8L2, the expression 

differences between male and female larvae are still significant, but have narrowed 

compared to expression in late embryonic stages (Figure 4.6). 

These expression patterns are the opposite of the expression pattern for the 

male-biased gene GTF2IRD2, as well as the preliminary male-biased gene C50ti54 

(Figure 4.5). Though I have only surveyed a handful of genes, these expression 

patterns may indicate that the earliest stages of sexual differentiation consist of an 

upregulation of certain genes in female embryos. However, by hatching, male 

larvae begin to upregulate a different set of genes. If so, then the initial molecular 

function of the Y-linked sex determination gene in males may be to repress targets 

like CCDC34, EPS8L2, ZFP106, and PAQR4 in late embryonic stages, preventing 

the initiation of female differentiation. However, as with GTF2IRD2, the molecular 

roles of these female-biased genes are not fully known, making it difficult to 

hypothesize the roles these genes could be playing in G. aculeatus female 

differentiation. PAQR4 is a member of a family of vertebrate adiponectin and 

progestin transmembrane receptions, but no ligand for PAQR4 has been reported 

for any species (Tang et al., 2005). Nucleolar-localized ZFP106 has been proposed 

to help regulate testis development in mammals (Grasberger and Bell, 2005). 

EPS8L2 has been implicated in actin-mediated cytoskeleton remodeling in response 

to growth factors, but not yet linked to sexual differentiation (Offenhauser et al., 

2004). Finally, CCDC34 has no reported roles in development. Thus, as with male

biased GTF2IRD2, future studies of these genes should first confirm their differential 

expression, specifically in the developing gonad. A parallel RNA-Seq screen of the 

developing gonad could identify additional partner genes in these pathways. 
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Dosage Imbalance on the Sex Chromosomes of G. aculeatus 

A majority (275/301) of the female-biased genes identified by my RNA-Seq 

screen are from the X chromosome (see Appendix). Among these X chromosome 

genes, expression is on average twofold higher in females compared to males. 

These findings suggest that G. aculeatus lacks a global dosage compensation 

mechanism to equalize X gene dosage between the sexes. Instead, for many X 

chromosome genes, female expression is twofold higher than male expression. 

Another group has reported this dosage imbalance of X chromosome genes 

between the sexes for G. acu/eatus, using a microarray approach instead of RNA

Seq (Leder et al., 2010). However, dosage imbalance in G. aculeatus will be difficult 

to study until the complete Y chromosome sequence is available. Future studies 

should map the divergence of X and Y chromosome alleles to determine which 

portions of the X chromosome are most likely to contain genes for which males have 

no functional Y chromosome copy. Then, we should be able to revisit this RNA-Seq 

dataset to confirm that male G. aculeatus have only one copy of those loci (on their 

single X chromosome), while females have two. 

G. aculeatus is not the only organism which appears to lack a global dosage 

compensation mechanism between the sexes. The silkworm moth, the chicken, and 

the trematode parasite Schistosoma mansoni also do not have global dosage 

compensation mechanisms (Ellegren et al., 2007; Vicoso and Bachtrog, 2011; 

Walters and Hardcastle, 2011). Interestingly, these three species have ZZ-ZW sex 

chromosome systems, leading to speculation that global dosage compensation may 

be limited to XX-XV systems. G. aculeatus may be the first reported species with 

heteromorphic XX-XV sex chromosomes to lack a global dosage compensation 

mechanism. However, there is evidence for the regulation of sex-specific 

expression levels on a gene-by-gene basis in G. aculeatus (Leder et al., 2010). For 

example, in my own RNA-Seq dataset, at least nine genes from the X chromosome 

were upregulated in males (p<0.05) compared to females. Thus, in G. aculeatus, 

there may be mechanisms in place to regulate X gene dosage spatially or 

temporally, based on the gene and its required function. This may be similar to the 

gene-by-gene local dosage compensation mechanism proposed for chickens (Mank 
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and Ellegren, 2009). Future studies on expression of X chromosome genes in G. 

aculeatus across different tissues and ages will allow us to fully understand the 

broad mechanisms covering X chromosome dosage in this species. However, it 

appears that G. aculeatus is the latest species, and possibly first species with XX-XV 

sex chromosomes, to lack a global dosage compensation mechanism between 

females and males. 

Y Chromosome Genes in G. aculeatus 

Through the efforts of my colleague Matt Fitzgibbon, we are using this RNA

Seq study to begin to identify Y chromosome genes expressed in male G. aculeatus 

during these late embryonic and early larval stages. A larger number of male

derived de novo contigs (653) aligned to Y chromosome BAC sequences than 

female-derived contigs (137). However, among contigs that did not align to the Y 

chromosome BACs or the female G. aculeatus genome, there remain nearly equal 

numbers of male (12,370) and female (10,278) contigs. Thus, without a complete Y 

chromosome sequence to which we can align these contigs and identify expressed 

Y chromosome genes, the only tool available to sort out Y chromosome gene 

contigs from low-quality "junk" contigs are the results of the BLAST search of these 

contigs against the NCB I non-redundant protein database. These BLAST results 

should help discard low-quality contigs. 

A larger portion male-specific contigs (including some that align to Y 

chromosome BAC sequences) have BLAST results indicating that that are derived 

from transposable elements (TEs) compared to female-specific contigs (4.29% of 

male contigs with BLAST results compared to 2.18% of female-specific contigs with 

BLAST results) (data not shown). Several prior studies have documented that TEs 

invade the sex-specific regions of evolving Y or W chromosomes in a variety of 

lineages, including G. aculeatus (Liu et aI., 2004; Peichel et a/., 2004; Kondo et a/., 

2006; Bachtrog et a/., 2008; Marais et a/., 2008). Our data indicate that, at least in 

G. aculeatus male embryos and larvae, many of these TE-derived genes are 

expressed, particularly since our cDNA library synthesis protocol first removed RNA 

molecules that were not poly-adenylated (Figure 4.2). Another line of evidence that 
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Y chromosome TE-derived genes are expressed comes from the preliminary qPCR 

results for the Buster3 transposase-like gene CSotiS4 (Figure 4.5). Though I 

originally identified this gene as autosomal, evidence recently surfaced indicating 

that the Y chromosome contains at least one copy of CSotiS4. If confirmed, this 

finding may help explain why CSotiS4 showed the largest male-biased expression 

among any autosomal or X chromosome gene between my two biological replicate 

RNA-Seq experiments. Thus, the G. aculeatus Y chromosome likely contains a 

number of genes required for male sex determination and sexual differentiation, but 

there is increasing evidence that the Y chromosome also harbors a number of TE

derived genes that are transcribed. 

The experiments described in this chapter indicate that, by late embryonic 

development, there are already genes in the G. aculeatus genome that are 

differentially expressed between the sexes. This may indicate that the Y 

chromosome-based G. aculeatus sex determination gene acts during these 

developmental stages, if not sooner. The preliminary results described here are 

best seen in the context of a future survey to characterize Y chromosome genes 

expressed in male embryos and larvae, and to identify candidate sex determination 

genes. Future studies will use the complete Y chromosome sequence, and begin to 

map degenerate loci between the X and Y chromosomes. These studies may also 

clarify the extent to which gene-by-gene dosage compensation has evolved in G. 

aculeatus. Thus, my experiments and preliminary results will fuel future studies of 

the gene content of the G. aculeatus sex chromosomes. Once we know the sex 

determination gene in G. aculeatus, we should be able to determine whether other 

stickleback species with divergent sex chromosomes have evolved their own sex 

determination genes. 
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Table 4.1. Summary of the sources of RNA samples used for RNA-Seq and 
qPCR. 
Sample Experiment Stage 22 Stage 23 Stage 24 Stage 26 
Female cDNA 
fragment library 1 

RNA-Seq 17 25 43 24 

Male cDNA fragment RNA-Seq 
library 1 
Female cDNA 
fragment library 2 

RNA-Seq 

Male cDNA fragment RNA-Seq 
library 2 
Pre-hatching female 
samples 1 through 8 
Pre-hatching male 
samples 1 through 7 

qPCR 

qPCR 

Post-hatching female qPCR 
samples 1 through 8 
Post-hatching male 
samples 1 through 8 

qPCR 

26 

25 

26 

2 

2 

o 

o 

24 35 15 

25 25 19 

25 28 21 

2 2 o 

2 2 o 

o o 6 

o o 6 

The table indicates the number of individual G. aculeatus embryos (pre-hatching, 
stages 22-24) or larvae (post-hatching, stage 26) dissected (Figure 4.1) for each 
RNA sample. 



Table 4.2. A summary of all RNA-Seq experiments conducted. 
Flow Library Number of Total number of Reads aligned to G. 
Cell Technical reads aculeatus XX 

1 Female cDNA fragment 
library 1 

Replicates genome 
3 35,112,569 15,918,712 (45.34%) 

Reads unaligned 

19,193,857 (54.66%) 

1 Male cDNA fragment 
library 1 

4 47,894,649 22,261,474 (46.48%) 25,633,175 (53.52%) 

2 

2 

Female cDNA fragment 
library 2 
Male cDNA fragment 
library 2 

2 

2 

50,361,561 24,821,218 (49.29%) 25,540,343 (50.71%) 

58,188,210 27,748,939 (47.69%) 30,439,271 (52.31 %) 

Two flow cells (labeled "1" and "2") were used to sequence female and male cDNA fragment libraries. The number of 
technical replicates is the number of lanes on a single flow cell dedicated to a particular sample. Reads from each library 
were aligned to the G. aculeatus female (XX) genome (BROAD 81 assembly, February 2006, available at 
http://www.ensembl.org/Gasterosteus_aculeatus/index.html) using the BWA tool. 

--.l 
(J1 
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Table 4.3. Y chromosome BAC sequences used for alignment of RNA-Seq 
reads. 
Y Chromosome BAC Length (bp) 
CH215-01017 161,859 
CH215-06A12 171,681 
CH215-12C22 180,975 
CH215-21M12 152,065 
CH215-21020 189,583 
CH215-25A07 168,731 
CH215-26002 170,861 
CH215-29020 168,736 
CH215-39H13 180,941 
CH215-44C17 183,121 
CH215-50F06 161,386 
CH215-5002 161,473 
CH215-54G05 171,986 
CH215-203C15 216,892 
CH215-207L20 132,739 
CH215-207M13 177,715 
CH215-220M23 233,335 
CH215-221 F22 112,315 
CH215-230L07 98,281 
CH215-238B03 221,572 
CH215-240117 126,283 
CH215-240N11 200,302 
CH215-241K12 110,211 
CH215-244B17 217,617 
CH215-245B07 202,475 
CH215-247K17 201,048 
CH215-250P02 204,128 
All Y chromosome BAC sequences come from the CHORI 215 BAC library (Kingsley 
et al., 2004). 



Table 4.4. A summary of genes tested by gPCR. 
Gene Sex Molecular or physiological Chr Ensembl gene 10 Oligonucleotides (5' to 3') E 

bias role 
GTF21RD2 Male** Transcription factor from TFII-I Un ENSGACG000000134 74 For: CAA TGCT ACTGCATCTGAGGAAA 1.93 

famill'; target genes unknown Rev: GCTGATCAAGGTCACAAAACCTATC 

PKD2 Male* Transmembrane ER cation 16 ENSGACGOOOOOO02153 For: CGCGACATGACCTACTACGAAA 1.76 
channel; Ca2

+ signaling; vascular Rev: CCAGGAAGGCGACCAGATAC 

integritl' 
PAQR4 Male* Related to transmembrane 11 ENSGACGOOOOO013570 For: ACTGCATCAGGAGCCTGTTCTAC 2.05 

receptors for adiponectin and Rev: GGATGCCGTGCGTGT AAA T 

~rogestin; ligands unknown 
C50rf54 Male** Transposon-derived Buster3 18 ENSGACGOOOOOO06487 For: TGCCTGTTCTCGGCTTTGT 2.51 

trans~osase-like ~rotein Rev: TTTGCGATCGATGCTGTGA 

CCDC34 Female** Coiled-coil domain containing 34; 19/X ENSGACGOOOOO010963 For: GCTGGTGAACAAGGCCAAA 2.08 
function unknown Rev:CTGCTCCTCATCTGCTTGTTTTT 

OVGP1 Female* Oviductal glycoprotein 1; secreted; 12 ENSGACGOOOOOO03535 For: AGGGAAAA T ACCCCCTCATT AGATA 1.94 
~ossible regulation bl' estradiol Rev:CAATGGAGGTGGAAAATCTGAAT 

ZAR1 Female* Zygote arrest 1; reported sex- 08 ENSGACGOOOOO014170 For: CGTACGTGTGGTGCGTTCAG 2.02 
specific gonad expression; Rev: TTTGGCATTTCCTGCAGAACT 

~ossible transcri~tion regulator ""'-l 
ZFP106 Female* Zinc finger protein 106; possible Un ENSGACGOOOOOOO0693 For: CACATATGGGAACCACGTTTTACA 2.03 ""'-l 

roles in mammalian testes Rev: TCAGGCCGTCAGAGAAGTCA 

development, transcriptional 
regulation 

EPS8L2 Female* EPS8-like 2; actin remodeling in Un ENSGACGOOOOO018690 For: CAACCAGCAGACAGGCTACAGT 1.95 
res~onse to growth factors Rev: AAGCTGTCTCGATGGCTCAGA 

MYCBPAP Female** c-Myc binding protein; possible 09 ENSGACGOOOOO018886 For: GCGGAAGCCCGTCACA 2.21 
role in mammalian Rev:GATTTCCTGATTCCTGGCGTAT 

s~ermatogenesis 

EEF1B2 None Eukaryotic translation elongation 01 ENSGACGOOOOO015402 For: CCGCTGGT ACAACCACATCA 2.01 
factor 1 beta 2 Rev: ACTGACCCAGAGGCTTCTTCAC 

Ten genes were tested by qPCR, while EEF182 was used as a reference gene to normalize expression of the test genes. 
E: qPCR oligonucleotide efficiency (Pfaffl, 2001); E values that fall outside of quality control standards (1.9<E<2.1) are indicated in red 
Significance of sex bias in gene expression (by RNA-Seq): *p<0.05 or **p<0.01 from two biological replicates 
Un: unassembled; scaffold in the G. aculeatus genome that has not yet been incorporated into a chromosome assembly 
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Figure 4.1. G. aculeatus embryos. 

Upper panel shows a stage 24 (Swarup, 1958) G. aculeatus embryo in its chorion. 
Lower panel shows a stage 24 G. aculeatus embryo after being euthanized and 
removed from its chorion casing. The black box indicates the region of tissue (which 
includes the developing gonad) from which total RNA was extracted for RNA-Seq 
and qPCR. White scale bars = O.5mm. 
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Figure 4.2. An overview of the construction of cDNA fragment libraries for 
RNA-Seq. 
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Figure 4.3. An overview of the analysis of the RNA-Seq datasets to identify 
differentially expressed genes and Y chromosome genes. 
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Figure 4.4. Expression of reference gene EEF1B2. 
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Expression of reference gene EEF182 does not vary sign ificantly between sexes or 
by age in G. aculeatus embryos and larvae (stages 22-24 and 26) by qPCR. Error 
bars indicate standard deviation. 
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Figure 4.5. Expression of GTF2IRD2, C5orf54, PKD2, and PAQR4 by qPCR. 
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I used independent t-tests to identify significant differences by age (left panels) and 
sex (middle panels), while I used a two-way ANOVA to identify significant 
differences by both sex and age. Error bars indicate standard error. I note 
significance as follows: N.S. (not significant), *p<O.05, **p<O.01, and ***p<O.001. 
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Figure 4.6. Expression of CCDC34, EPSBL2, ZFP106, and MYCBPAP by qPCR. 
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I used independent t-tests to identify significant differences by age (left panels) and 
sex (middle panels), while I used a two-way ANOVA to identify significant 
differences by both sex and age. Error bars indicate standard error. I note 
significance as follows: N.S. (not significant), *p<O.05, **p<O.01, and ***p<O.001. 
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Figure 4.7. Expression of ZAR1 and OVGP1 by qPCR. 
Normalized Expression by Age Normalized Expression by Sex Normalized Expression by Age and Sex 
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I used independent t-tests to identify significant differences by age (left panels) and 
sex (middle panels), while I used a two-way ANOVA to identify significant 
differences by both sex and age. Error bars indicate standard error. I note 
significance as follows: N.S. (not significant), *p<O.05, **p<O.01, and ***p<O.001. 
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CHAPTER FIVE 

Conclusions and Future Directions 

SUMMARY 

The experiments I have described in this dissertation have revealed greater sex 

chromosome diversity in sticklebacks than previously known. Sex chromosome 

systems have evolved independently at least three times in the stickleback family; in 

some species, sex chromosome systems even vary among populations. Since there 

are isolated populations among most stickleback species, there is an even greater 

potential for sex chromosome diversity in this family. Thus, future studies should 

look for evidence of additional population differences in sex chromosome 

morphology or sex chromosome system. My experiments have also revealed some 

of the earliest differentially expressed genes in the threespine stickleback, 

Gasterosteus aculeatus. The RNA-Seq dataset I have generated will aid in the 

characterization of the G. aculeatus Y chromosome sequence, since I have also 

identified potentially hundreds of Y chromosome genes that are expressed in male 

embryos and larvae. Future studies will determine if the G. aculeatus Y 

chromosome does harbor a large number of transcribed transposable element-like 

loci, in addition to the elusive sex determination gene. 
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A REVISED VIEW OF SEX CHROMOSOME EVOLUTION IN STICKLEBACKS 

How Many Sex Chromosome Systems Have Evolved in the Stickleback 

Family? 

At least three sex chromosome systems have arisen independently in the 

stickleback family in within the past 40 million years. I based this statement on the 

major findings from Chapters 2 and 3 of this dissertation. The ZZ-ZW sex 

chromosome system of the fourspine stickleback (Apeltes quadracus) is not related 

to the chromosome (Chr) 12-based XX-XV sex chromosome system of the 

ninespine stickleback (Pungitius pungitius) or the Chr19-based sex chromosome 

systems in the genus Gasterosteus (Figure 1.1) (Ross et aI., 2009). Thus, in at least 

three times in stickleback history, three different autosomal pairs became nascent 

sex chromosomes. This event could have happened more than three times, since 

there have been no surveys for sex chromosomes in the fifteenspine stickleback 

(Spinachia spinachia) , and only a cursory screen for sex chromosomes in the brook 

stickleback, Culaea inconstans (Ross et al., 2009). If C. inconstans does have a sex 

chromosome system, it is also likely arose independent of the Gasterosteus and P. 

pungitius sex chromosome systems, based on evidence presented in Chapter 2 and 

Ross et aI., 2009. Thus, the potential for between-species sex chromosome 

diversity in this family is even greater than I can currently conclude. However, we 

will need additional genetic and cytogenetic surveys to conclude exactly how many 

times sex chromosome systems have arisen in this family. 

Do Sticklebacks Share the Same Sex Determination Gene? 

In Chapter 4, I described a screen to identify the sex determination gene in 

the threespine stickleback, Gasterosteus aculeatus. This search is still ongoing. 

The results of my screen, when combined with the complete sequence of the G. 

aculeatus Y chromosome (which is expected within the next year), should help form 

a list of candidate sex determination genes for this species. These candidates must 

be screened through a series of experiments to find the candidate gene with the 

precise spatial and temporal characteristics of a sex determination gene, as well as 

the functional role of a sex determination gene. A good candidate gene will be 
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expressed within the male bipotential gonad prior to the morphological divergence of 

the sexes. In addition, the candidate gene should be both necessary and sufficient 

to transform genetic females (XX) into phenotypic males when this candidate is 

expressed using transgenics prior to the determination of gonad fate (Koopman et 

aI., 1991; Matsuda et al., 2007). Finally, once we know the G. aculeatus sex 

determination gene, we can screen for its presence or absence in other stickleback 

species, and begin to understand whether the turnover of sex chromosomes in this 

family is correlated with the turnover of sex determination genes. These 

experiments will take several years to execute, but I hope the process will begin 

now, with the data I have presented in Chapter 4. 

Despite the wait required to identify and validate candidate sex determination 

genes, my high-throughput screen has already yielded data that are transforming 

our view of how the gene content of sex chromosomes has evolved in G. aculeatus. 

I have confirmed that transposable element (TE)-like genes have invaded the G. 

aculeatus Y chromosome (peichel et aI., 2004). Surprisingly, at least some of these 

TE-like loci are expressed during late embryonic and early larval male development 

(Figure 4.5) (peichel, unpublished). I have also confirmed the absence of a global 

dosage compensation mechanism in G. aculeatus. Gene dosage can be regulated 

on a case-by-case basis, but over 200 X chromosome genes were still expressed at 

twice the level in females compared to males. These findings should lead to new 

studies on gene regulation of sex chromosomes, including the regulation of invasive 

TE-like elements and the imbalance of X chromosome gene dose between the 

sexes. 

FUTURE DIRECTIONS 

The Search for the Sex Determination Gene in G. aculeatus 

The search for the G. aculeatus sex determination gene has been an ongoing 

project in the Peichel laboratory for the past eight years. It initially took the form of 

positional cloning and "chromosome walking" experiments, before new data on the 

immense size of the non-recombining region of the Y chromosome made these 

approaches impractical. Other members of the laboratory have investigated specific 
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genes on the sex chromosomes to look for diverged Y chromosome alleles. 

However, this gene-by-gene approach was always limited by its focus on the genes 

known to be on the X chromosome. We rarely had the opportunity to look first at 

genes on the Y chromosome itself; we were always searching instead for diverged Y 

copies of X chromosome genes. Thus, this approach ignored the potentially rich 

assortment of genes which could have transposed to the Y chromosome following 

the loss of recombination with the X. 

The search for the G. aculeatus sex determination gene has been most 

hampered by the lack of a complete Y chromosome sequence. The G. aculeatus 

sex chromosome pairs are among the largest chromosome pairs in the karyotype 

(Ross and Peichel, 2008). The X chromosome itself is over 20Mbp in length, with 

over 1,000 known or predicted protein-coding genes. The non-recombining region 

corresponds to approximately 16Mbp of X chromosome sequence. Thus, the G. 

aculeatus Y chromosome differs vastly from another model fish to which it is so often 

compared, the medaka fish (Oryzias tatipes). The male-specific region of the 

medaka Y chromosome is less than 0.3Mbp in length, and the sex determination 

gene DMY is the only gene in this region (Matsuda et al., 2002; Nanda et al., 2002). 

But, G. aculeatus is not medaka. All evidence to date suggests that the male

specific region of the G. aculeatus Y chromosome is much larger, with a rich and 

complex assortment of genes. Some genes are Chr19 genes with alleles on the X 

chromosome, while others are copies of genes potentially transposed from 

autosomes (including GTF21RD2 and C5orf54 in Figure 4.5; Table 4.5) (peichel, 

unpublished). In short, the G. aculeatus Y chromosome is simply too large to 

navigate without a map. 

Thus, the search for the G. aculeatus sex determination gene must enter the 

age of genomics and bioinformatics. The Y chromosome sequence is in progress, 

and will likely be completed within the next year. I believe the best approach to 

identifying the sex determination gene in this species is to identify predicted genes 

on the Y chromosome itself. This approach can make use of transcriptome datasets 

generated by myself (Chapter 4) and Catherine Peichel (unpublished) by RNA-Seq. 

Both of our RNA-Seq datasets include transcript sequences from expressed Y 
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chromosome genes, which should aid in mapping the gene content of the Y 

chromosome. This approach will help navigate the Y chromosome spatially, 

identifying Y chromosome genes of interest that we would not have known about 

otherwise, including genes that were transposed to the Y chromosome from 

autosomes. My RNA-Seq dataset may help further identify candidate sex 

determination genes, since this dataset includes all genes expressed in males 

during early stages of gonadal differentiation. 

Dosage Compensation in Sticklebacks 

G. aculeatus lacks a global mechanism to equalize the dose of X 

chromosome genes between the sexes (Chapter 4) (Leder et a/., 2010; Peichel, 

unpublished). However, gene-by-gene regulation of gene dose still occurs for some 

X chromosome genes; this regulation can take the form of equalizing gene 

expression between the sexes, or even boosting expression in males relative to 

females (Chapter 4) (Leder et a/., 2010; Peichel, unpublished). 

While three independent experiments have demonstrated the absence of 

global dosage compensation in this species, I believe future experiments should 

explore the patterns of gene-by-gene dosage regulation among X chromosome 

genes. Both RNA-Seq and microarray expression studies could be used to 

investigate the spatial and temporal patterns of the X chromosome dosage 

imbalance. These investigations should examine whether the same sets of genes 

escape this (possibly default) dosage imbalance across different tissues and ages. 

would also like to know if there are trends for the types of genes that do consistently 

show dosage imbalance over genes that do not. 

If there is a small subset of genes that consistently escape dosage imbalance 

across tissue types and ages, this may indicate a nascent X chromosome specific 

dosage compensation regulatory mechanism for this handful of genes. If so, it 

would be interesting to learn the molecular details of this regulatory network, 

specifically if there are cis regulatory elements common to all genes in this network. 

However, it is equally possible that genes escaping the dosage imbalance could 
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each have their own tissue and age-specific regulatory elements governing their 

expression. 

In either case, it appears that G. aculeatus has joined the ranks of a growing 

list of sex chromosome-bearing organisms that lack global dosage compensation 

mechanisms. Most prominent on this list is the chicken, and other recent additions 

include the silkworm moth and trematode Schistosoma mansoni (Ellegren et aI., 

2007; Vicoso and Bachtrog, 2011; Walters and Hardcastle, 2011). However, these 

three species have ZZ-ZW sex chromosomes, while G. aculeatus has a XX-XV 

system. To date, we know of no other species of with XX-XV sex chromosomes 

(with a degenerate Y chromosome) that lacks a global dosage compensation 

mechanism. As additional studies of dosage compensation in other organisms 

continue, we will eventually learn whether G. aculeatus is an oddity among XX-XV 

species, or merely the first of many to join the league of species with sex 

chromosome dosage imbalance. 

Diversity of Stickleback Sex Chromosome Systems 

In Chapter 3, I described a Connecticut population of A. quadracus that lacks 

the ZZ-ZW heteromorphic sex chromosomes reported in two other populations of 

this species. Two hypotheses explain this result in the Connecticut population: 

either this population has homomorphic ZZ-ZW sex chromosomes, or this population 

lacks the ZZ-ZW pair entirely. In either case, I argue that this population represents 

an unexpected population-specific diversity of sex chromosome systems in 

sticklebacks. This diversity either lies in the differential degeneration of the W 

chromosome (making it identical to the Z in the Connecticut population, but smaller 

than the W in Massachusetts and Maine populations), or the absence of the ZZ-ZW 

system entirely in the Connecticut population. Either way, A. quadracus now joins 

the list of stickleback species with population-specific differences in sex 

chromosomes. 

In addition to A. quadracus, there are two other stickleback species with 

population-based differences in sex chromosome architecture or sex chromosome 

system. While most populations of G. aculeatus have an XX-XV sex chromosome 
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system (Chr19), G. acu/eatus from the Sea of Japan have a V-autosome fusion 

(Chr19 and Chr09), yielding an X1X1X2X2-X1X2 Y sex chromosome system (Kitano et 

a/., 2009). A G. wheatlandi population from Massachusetts has an X1X1X2X2-X1X2Y 

sex chromosome system from a separate V-autosome fusion (Chr19 and Chr12) 

(Ross et a/., 2009). However, this V-autosome fusion has not been documented in 

another G. wheatlandi population. In fact, Chen and Reisman (1970) report 

heteromorphic XX-XV sex chromosomes in G. wheatlandi from Reid State Park, 

Maine, USA. In this population, the Y chromosome is the smallest chromosome in 

the male karyotype, and males and females have identical chromosome numbers 

(Chen and Reisman, 1970). 

Diversity in sex chromosome systems between populations has not been 

surveyed properly among sticklebacks, despite the potential role for this diversity in 

population divergence and speciation. In G. aculeatus from the Sea of Japan, for 

example, at least one divergent behavioral trait in this population has been linked to 

the neo-X chromosome (Kitano et a/., 2009), and this V-autosome fusion may have 

occurred when the Sea of Japan was an isolated inland sea approximately 2 million 

years ago. We do not know of any morphological, ecological, behavioral, or 

physiological differences between either G. wheatlandi or A. quadracus populations 

that may explain these differences in sex chromosome architecture. For A. 

quadracus, I investigated the geologic history of the Connecticut West River and 

Long Island Sound and found no evidence for a similar period of geographic 

isolation during the most recent period of glaciation (Lewis and Stone, 1991; Stone 

et a/., 1998). Thus, we currently lack an explanation for reports of sex chromosome 

diversity for G. wheatlandi and A. quadracus. 

I would encourage future surveys of multiple stickleback populations and 

species to search for additional evidence of sex chromosome diversity. These 

surveys should take different forms, depending on the species in question. For the 

Gasterosteus species and P. pungitius, we could screen genomic DNA samples 

from multiple populations to verify the presence of SEX-linked Chr19 or Chr12 

markers. Those screens would easily identify populations that have a different (non

Chr19 or non-Chr12) sex chromosome system, or lack sex chromosomes 
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completely. However, more complex cytogenetic surveys are required to identify 

populations with different degrees of sex chromosome degeneration or sex 

chromosome rearrangements. Cytogenetic methods are also the primary means of 

surveying species without SEX-linked markers, including A. quadracus. Since 

cytogenetic techniques are more time-consuming, these methods should only be 

deployed to survey populations where there has already been a reported ecological, 

morphological, behavioral, or physiological difference, as inspired our previous 

investigations of the Sea of Japan G. aculeatus population (Kitano et aI., 2007). 

These surveys are superficial in scope, and would merely identify potentia! 

population differences in sex chromosome architecture or sex chromosome system. 

However, these surveys are the necessary first steps to identify populations where 

sex chromosome diversity is linked to reproductive isolation, which may indicate a 

role for sex chromosome diversity in speciation. Thus, these surveys should lay the 

foundation for the next great report, linking sex chromosome divergence between 

populations to the first stages of the origin of a new species. 

FINAL THOUGHTS 

This is an exciting time in the field of sex determination and sex 

chromosomes. Within the past two decades a number of new model sex 

chromosome systems and sex determination systems have emerged. These 

systems include a rich diversity of sex chromosomes in different stages of evolution. 

In medaka and their close relatives, we see rapid turnover of sex determination 

genes among species with homomorphic sex chromosomes. In sticklebacks, sex 

chromosome diversity is coupled with sex chromosome complexity, and large 

heteromorphic sex chromosomes dominate karyotypes. New findings are 

challenging old paradigms, from the paucity of Z1Z1Z2Z2-Z1Z2W systems in fishes to 

the surprising absence of global dosage compensation in some heteromorphic sex 

chromosome systems. 

With a little luck (and some well-executed experiments), the next decade 

should bring with it a new generation of sex determination genes in groups like 

sticklebacks and salmon ids, while careful developmental studies should link how 
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environmental sex determination mechanisms manipulate sexual differentiation 

pathways. Right on the heels of these discoveries will be new hypotheses to explain 

the transitions between genetic and environmental sex determination mechanisms. 

Thus, though I leave sticklebacks and sex determination behind, I look 

forward to monitoring this rich and diverse field from the outside. Today's mysteries 

in the field of sex determination are not easy to address. They are complex issues 

at the intersection of genetics, development, molecular biology, and evolution. But, 

in my core, I am an optimist, and I have confidence that patience and careful 

experiments will prevail. So, I will be interested to see how the answers to today's 

complex questions spawn new questions for tomorrow's research. All in all, the 

future looks bright. 
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APPENDIX 

Supplementary Table of Differentially Expressed Genes 

I designed and executed a next generation RNA-Seq screen to identify genes that 

are differentially expressed between male and female threespine sticklebacks 

(Gasterosteus aculeatus) just as sexual differentiation begins. I report the major 

findings of this screen in Chapter 4. This appendix is a supplementary table listing 

all autosomal and X-chromosome genes that show a significant expression bias 

between the sexes (p<0.05) in two independent RNA-Seq experiments. The 301 

female-biased genes and 66 male-biased genes are listed by chromosome. For 10 

genes, I also used quantitative PCR to compare expression levels between the 

sexes (Table 4.4). In this supplementary table, I have highlighted the Ensembl 

designations of these genes in grey. 



Normalized Number of Reads (RPKM) Fold Difference 
Flow Cell 1 Flow Cell 2 Flow Cell 1 Flow Cell 2 

Gene Chr EnsembllD Female Male Female Male Female:Male Female:Male 
01 ENSGACGOOOOOO06908 0.0833 0.0477 0.1042 0.0478 1.7481 2.1800 
01 ENSGACGOOOOOO06915 0.0855 0.0476 0.0914 0.0463 1.7980 1.9729 

Wdr69 01 ENSGACGOOOOOO07395 0.2097 0.1105 0.2194 0.1203 1.8979 1.8240 
Trpc6 01 ENSGACGOOOOOO12155 0.1083 0.2066 0.1081 0.2279 0.5244 0.4743 
SIc35f2 01 ENSGACGOOOOOO13315 0.0817 0.1502 0.0973 0.1941 0.5438 0.5012 

01 ENSGACGOOOOO013401 0.1181 0.2196 0.0758 0.2168 0.5379 0.3494 
Nfkbiz 01 ENSGACGOOOOO013710 0.2374 0.1045 0.2108 0.1257 2.2725 1.6769 
Gucy1b2 01 ENSGACGOOOOOO15355 0.0809 0.1736 0.0276 0.1450 0.4661 0.1901 
Cd59 01 ENSGACGOOOOO015409 0.0662 0.2839 0.0990 0.2910 0.2331 0.3402 
Rgs13 03 ENSGACGOOOOO016116 0.1550 0.4157 0.2485 0.6225 0.3729 0.3993 
Cyr61 03 ENSGACGOOOOO017235 0.2162 0.4637 0.2079 0.4650 0.4661 0.4472 
Aqp1 03 ENSGACGOOOOOO 17380 0.0052 0.0485 0.0100 0.0389 0.1076 0.2580 

04 ENSGACGOOOOO016919 0.0931 0.1748 0.0821 0.1602 0.5327 0.5124 ->. 

Clnk 04 ENSGACGOOOOO017564 0.0755 0.1560 0.1022 
0 

0.1781 0.4841 0.5741 -.....l 

SIc26a3 04 ENSGACGOOOOOO19389 0.1216 0.0669 0.1799 0.0697 1.8180 2.5799 
04 ENSGACGOOOOOO 19494 0.0759 0.1466 0.0779 0.1568 0.5179 0.4969 
04 ENSGACGOOOOOO 19864 0.5352 1.0525 0.2574 0.5373 0.5085 0.4791 

Retstat 05 ENSGACGOOOOOO03399 0.1283 0.2752 0.1337 0.2575 0.4661 0.5190 
05 ENSGACGOOOOOO08680 0.0159 0.0729 0.0470 0.0822 0.2185 0.5714 

Lrrc18 06 ENSGACGOOOOOO07028 1.0647 0.5857 1.3132 0.7987 1.8180 1.6440 
Ogdhl 06 ENSGACGOOOOOO08169 0.0508 0.0290 0.0326 0.0087 1.7481 3.7265 
Ankrd23 06 ENSGACGOOOOO011020 0.8234 1.6860 0.7561 1.3311 0.4883 0.5680 

07 ENSGACGOOOOOO18954 0.0731 0.3399 0.2345 0.5664 0.2151 0.4141 
Epm2aip1 07 ENSGACGOOOOOO18984 0.6017 1.1633 0.6288 1.0611 0.5172 0.5926 

Tmem151a 07 ENSGACGOOOOO019708 0.0785 0.6175 0.2769 0.7205 0.1271 0.3843 

07 ENSGACGOOOOO020099 0.0442 0.2213 0.0709 0.3677 0.1998 0.1928 



Normalized Number of Reads (RPKM) Fold Difference 
Flow Cell 1 Flow Cell 2 Flow Cell 1 Flow Cell 2 

Gene Chr EnsembllD Female Male Female Male Female:Male Female:Male 
07 ENSGACGOOOOO020240 0.0612 0.1375 0.0897 0.1604 0.4450 0.5590 

Une119 07 ENSGACGOOOOO020475 0.0326 0.0699 0.0209 0.0514 0.4661 0.4065 

Prss7 07 ENSGACGOOOOO020914 0.0059 0.0276 0.0114 0.0358 0.2151 0.3194 

Barhl2 08 ENSGACGOOOOOO04346 0.1766 0.3632 0.1416 0.3420 0.4864 0.4141 

Zar1 08 ENSGACGOOOOO014170 0.3482 0.0996 0.2457 0.1398 3.4961 1.7568 

S/e22a7 09 ENSGACGOOOOO017814 0.1688 0.0966 0.2112 0.0339 1.7481 6.2286 

Myebpap 09 ENSGACGOOOOOO18886 0.1651 0.0590 0.1376 0.0568 2.7969 2.4222 

Limd1 10 ENSGACGOOOOOO03072 1.5185 0.8026 1.5666 0.8900 1.8920 1.7602 

Rxfp4 10 ENSGACGOOOOOO03931 0.2541 0.5450 0.2037 0.4008 0.4661 0.5082 

Atad4 11 ENSGACGOOOOOO05720 0.4451 0.2273 0.4322 0.2553 1.9578 1.6929 

Aga 11 ENSGACGOOOOOO08055 4.3469 1.9553 3.1475 1.6088 2.2232 1.9564 

Aeen1 11 ENSGACGOOOOOO09558 0.0150 0.0398 0.0147 0.0259 0.3774 0.5699 

11 ENSGACGOOOOO012558 0.5264 0.1506 0.6302 0.3523 3.4961 1.7887 ->. 

0 
Paqr4 11 ENSGACGOOOOO013570 0.2878 0.5439 0.2900 0.4953 0.5291 0.5856 O? 

Ovgp1 12 ENSGACGOOOOOO03535 1.5922 0.9211 1.6751 0.9750 1.7286 1.7181 

Sema3e 12 ENSGACGOOOOOO05697 0.0132 0.0292 0.0092 0.0179 0.4524 0.5160 

12 ENSGACGOOOOO013371 0.0621 0.4443 0.0398 0.4277 0.1398 0.0932 

Ydje 13 ENSGACGOOOOOO05098 1.2768 2.4652 1.3102 2.2707 0.5179 0.5770 

C2orf39 13 ENSGACGOOOOOO07338 0.3453 0.1679 0.1683 0.1030 2.0565 1.6339 

Dusp21 13 ENSGACGOOOOO011200 1.3263 2.6728 2.8612 4.9802 0.4962 0.5745 

Pla2g1b 13 ENSGACGOOOOOO 12644 0.8054 0.3839 0.6456 0.3080 2.0977 2.0962 

Tal2 13 ENSGACGOOOOO013904 0.1497 0.4013 0.2160 0.5581 0.3729 0.3870 

Hspb11 14 ENSGACGOOOOO017813 0.4287 0.0951 0.3888 0.1018 4.5061 3.8197 

Hsbp11 14 ENSGACGOOOOO017815 1.3785 0.0704 1.1998 0.2824 19.5783 4.2482 

14 ENSGACGOOOOOO 18393 0.0870 0.2696 0.1209 0.2080 0.3227 0.5813 

Gabrr2 15 ENSGACGOOOOO013033 0.0114 0.0586 0.0073 0.0635 0.1951 0.1157 



Normalized Number of Reads (RPKM) Fold Difference 
Flow Cell 1 Flow Cell 2 Flow Cell 1 Flow Cell 2 

Gene Chr EnsembllD Female Male Female Male Female:Male Female:Male 
Pkd-2 16 ENSGACGOOOOOOO2153 0.0869 0.6342 0.0673 0.1329 0.1370 0.5066 

Q2ped4 16 ENSGACGOOOOOO02202 0.7588 1.4564 1.2806 2.3826 0.5210 0.5375 

Lypd1 16 ENSGACGOOOOOO02758 0.0646 0.0294 0.0528 0.0303 2.1976 1.7390 

16 ENSGACGOOOOOO06493 0.0309 0.0568 0.0368 0.0734 0.5438 0.5012 

Ankrd44 16 ENSGACGOOOOOO08817 0.2387 0.4589 0.2959 0.5233 0.5201 0.5655 

17 EN SGACGOOOOOO03551 0.5279 0.9909 0.5925 1.1735 0.5327 0.5049 

Abhd6 17 ENSGACGOOOOOO03935 0.6706 0.3836 0.4623 0.2404 1.7481 1.9229 

Cnih3 18 ENSGACGOOOOOO04246 0.0195 0.0428 0.0250 0.0448 0.4560 0.5590 

18 ENSGACGOOOOOO04653 0.0705 0.5042 0.2713 0.6067 0.1398 0.4472 

C5orf54 18 ENSGACGOOOOOOO6487 0.0429 4.4461 0.3300 5.5594 0.0096 0.0594 

Oet1 19/X E NSGACGOOOOOO03152 1.7675 0.7693 1.5717 0.9307 2.2974 1.6887 

C16orf57 19/X ENSGACGOOOOOO03257 3.0353 1.3188 2.1561 1.0139 2.3016 2.1265 

19/X ENSGACGOOOOOO03286 0.0742 0.0335 0.1503 0.0695 2.2142 2.1638 -'" 
0 

19/X ENSGACGOOOOOO03338 0.0646 0.1316 0.0642 0.1667 0.4907 0.3851 co 

19/X ENSGACGOOOOOO03348 0.6977 0.3859 0.6403 0.3643 1.8080 1.7575 

Olfml1 19/X ENSGACGOOOOOO03368 0.8277 0.4526 1.1319 0.5656 1.8287 2.0013 

Mical2 19/X ENSGACGOOOOOO03448 0.8460 0.4457 0.7211 0.3981 1.8982 1.8115 

Lingo 1 19/X ENSGACGOOOOOO03462 3.8192 1.8599 5.0043 2.5876 2.0534 1.9340 

Hmg20a 19/X ENSGACGOOOOOO03466 2.1308 0.8915 1.8032 0.9079 2.3903 1.9861 

19/X ENSGACGOOOOOO03482 7.6132 3.5683 6.5524 3.3605 2.1336 1.9498 

Syt12 19/X ENSGACGOOOOOO03487 2.0145 1.0296 1.8553 0.9776 1.9565 1.8979 

Cat 19/X ENSGACGOOOOOO03491 11.1774 5.2707 14.7498 6.1552 2.1207 2.3963 

19/X ENSGACGOOOOOO03509 11.8905 5.8050 10.0912 4.9447 2.0483 2.0408 

Ptdss2 19/X ENSGACGOOOOOO03546 1.2022 0.5435 1.1122 0.5311 2.2121 2.0941 

C21orf110 19/X ENSGACGOOOOOO03573 1.4588 0.8360 1.3265 0.6964 1.7451 1.9047 

Avpr1a 19/X ENSGACGOOOOOO03589 1.0541 0.5304 2.0532 0.8287 1.9873 2.4776 



Normalized Number of Reads (RPKM) Fold Difference 
Flow Cell 1 Flow Cell 2 Flow Cell 1 Flow Cell 2 

Gene Chr EnsembllD Female Male Female Male Female:Male Female:Male 
Akr1d1 19/X ENSGACGOOOOOO03639 3.3493 1.7741 3.3678 1.4825 1.8879 2.2717 

Trim24 19/X ENSGACGOOOOOO03650 0.9361 0.3816 0.8865 0.4768 2.4530 1.8593 

Fbln1 19/X ENSGACGOOOOOO03661 2.5206 1.3452 2.4130 1.3064 1.8737 1.8471 

Ppara 19/X ENSGACGOOOOOO03703 1.2815 0.5461 0.9090 0.5198 2.3465 1.7488 

Yars2 19/X ENSGACGOOOOOO03720 4.9401 2.3550 5.4374 2.5148 2.0977 2.1621 

Mrps35 19/X ENSGACGOOOOOO03757 10.5440 4.8231 5.7367 2.8899 2.1862 1.9851 

Tead4 19/X ENSGACGOOOOOO03761 0.6946 0.3353 0.6031 0.3694 2.0712 1.6329 

Dennd2a 19/X ENSGACGOOOOOO03792 1.7800 0.8011 1.4553 0.6427 2.2219 2.2643 

Pus 7 19/X ENSGACGOOOOOO03840 5.2481 2.6685 4.4990 2.4812 1.9667 1.8133 

Kia a 1644 19/X EN SGACGOOOOOO03905 0.0894 0.0389 0.1097 0.0558 2.2974 1.9676 

Plxnb2 19/X ENSGACGOOOOOO03911 1.5959 0.7727 1.0823 0.5936 2.0652 1.8232 

Tubgcp6 19/X ENSGACGOOOOOO03928 1.7021 0.9788 1.5213 0.8238 1.7391 1.8466 

Appl2 19/X ENSGACGOOOOOO03947 0.8440 0.4124 0.6315 0.3793 2.0465 1.6650 ~ 

~ 

Nuak1 19/X ENSGACGOOOOOO03957 2.0449 1.1194 1.7319 0.9794 1.8267 1.7682 0 

Mov10f1 19/X ENSGACGOOOOOO03977 0.1900 0.0631 0.1306 0.0740 3.0120 1.7652 

Tmem117 19/X ENSGACGOOOOOO04020 0.2161 0.1163 0.2386 0.1202 1.8582 1.9861 

Adamts20 19/X ENSGACGOOOOOO04063 0.8120 0.3809 0.9046 0.4345 2.1319 2.0820 

Prickle 1 19/X ENSGACGOOOOOO04088 1.1085 0.5813 1.1104 0.6662 1.9070 1.6668 

Pphln1 19/X ENSGACGOOOOOO04098 1.2913 0.6596 1.3651 0.7489 1.9578 1.8227 

Yaf2 19/X ENSGACGOOOOOO04103 3.4847 1.5490 3.9664 2.3773 2.2497 1.6685 

Glt8d3 19/X ENSGACGOOOOOO04112 1.0419 0.5631 1.2355 0.7228 1.8503 1.7092 

Pdzrn4 19/X ENSGACGOOOOOO04122 0.7653 0.3850 0.5935 0.3037 1.9879 1.9541 

Pnpla8 19/X ENSGACGOOOOOO04140 0.6937 0.3526 0.5173 0.2997 1.9673 1.7261 

Dnm11 19/X ENSGACGOOOOOO04145 3.9057 2.1698 3.5391 1.5697 1.8000 2.2546 

19/X ENSGACGOOOOOO04200 26.5735 13.8467 14.1368 8.1025 1.9191 1.7448 

8pgm 19/X ENSGACGOOOOOO04215 5.4150 2.5032 4.6129 2.2592 2.1632 2.0418 



Normalized Number of Reads (RPKM) Fold Difference 
Flow Cell 1 Flow Cell 2 Flow Cell 1 Flow Cell 2 

Gene Chr EnsembllD Female Male Female Male Female:Male Female:Male 
19/X ENSGACGOOOOOO04229 69.7580 38.5688 77.6095 40.5403 1.8087 1.9144 
19/X EN SGACG0000000424 7 1.4373 0.7019 1.5063 0.7441 2.0477 2.0244 

Kena6 19/X ENSGACGOOOOOO04310 3.7621 2.0959 4.3486 2.1833 1.7950 1.9918 
Chehd3 19/X EN SGACG0000000435 7 15.0286 7.6909 13.4978 8.0063 1.9541 1.6859 
Net1 19/X ENSGACGOOOOOO04380 1.9072 1.0357 1.6616 0.8515 1.8414 1.9513 
Dhtkd1 19/X ENSGACGOOOOOO04439 7.1861 3.6674 6.9991 3.9343 1.9595 1.7790 
Camk1d 19/X ENSGACGOOOOOO04485 0.5947 0.1772 0.5827 0.2938 3.3563 1.9835 
Uema 19/X ENSGACGOOOOOO04488 10.1462 5.1520 10.1740 4.1901 1.9694 2.4281 
Petk2 19/X ENSGACGOOOOOO04498 0.8600 0.3884 0.4313 0.2281 2.2142 1.8905 

19/X ENSGACGOOOOOO04521 2.6643 1.2984 2.4429 1.4039 2.0521 1.7400 
Hal 19/X ENSGACGOOOOOO04528 0.9001 0.3879 1.0912 0.5871 2.3202 1.8588 
Ntn4 19/X ENSGACGOOOOOO04555 0.7858 0.4436 0.9615 0.4864 1.7714 1.9769 

19/X ENSGACGOOOOOO04593 23.5787 10.5840 23.8969 9.9720 2.2278 2.3964 .....>. ...... 
Man2e1 19JX ENSGACGOOOOOO04613 2.7838 1.1164 1.9603 1.0521 2.4936 1.8633 -" 

Neil 1 19/X ENSGACGOOOOOO04670 3.1786 1.6449 3.5406 1.5595 1.9324 2.2703 

Commd4 19/X ENSGACGOOOOOO04675 3.5150 1.5897 2.2543 1.2409 2.2111 1.8167 

19/X ENSGACGOOOOOO04691 21.4837 10.5883 17.7557 10.7244 2.0290 1.6556 

Stra6 19/X ENSGACGOOOOOO04695 0.5011 0.2067 0.4985 0.1732 2.4240 2.8781 

Stoml1 19/X ENSGACGOOOOOO04724 4.2516 1.7510 3.7104 1.8679 2.4281 1.9864 

Hexa 19/X ENSGACG00000004 744 4.5742 2.4322 5.0247 2.4626 1.8807 2.0404 

Ppede 19/X ENSGACGOOOOOOO4795 1.5662 0.8095 1.5912 0.7739 1.9348 2.0560 

C15orf44 19/X ENSGACGOOOOOOO4827 5.7096 3.3032 6.4643 3.4291 1.7285 1.8851 

Dennd4a 19/X ENSGACGOOOOOO04867 0.3629 0.2053 0.4450 0.2242 1.7675 1.9849 

Megf11 19/X ENSGACGOOOOOO04885 0.0849 0.0469 0.0869 0.0513 1.8116 1.6956 

Zwileh 19/X ENSGACGOOOOOO05043 2.9769 1.4745 2.8498 1.2912 2.0189 2.2071 

Let! 19/X ENSGACGOOOOOO05057 1.0786 0.4435 1.3748 0.5414 2.4321 2.5393 



Normalized Number of Reads (RPKM) Fold Difference 
Flow Cell 1 Flow Cell 2 Flow Cell 1 Flow Cell 2 

Gene Chr EnsembllD Female Male Female Male Female:Male Female:Male 
Snapc5 19/X ENSGACGOOOOOO05078 3.4160 1.3112 2.5291 1.1095 2.6053 2.2795 

Smad3 19/X ENSGACGOOOOOO05092 1.7785 0.5504 1.1606 0.5966 3.2315 1.9452 

Aagab 19/X ENSGACGOOOOOO05119 9.2275 4.4904 5.7489 2.9424 2.0550 1.9538 

19/X ENSGACGOOOOOO05181 3.5867 1.6137 4.0255 1.8432 2.2227 2.1839 

Kif23 19/X ENSGACGOOOOOO05226 4.1458 1.9843 3.3792 1.6629 2.0893 2.0321 

/ghmbp2 19/X ENSGACGOOOOOO05293 3.4014 1.5962 2.8631 1.5651 2.1310 1.8294 

Chid1 19/X EN SGACGOOOOOO05331 5.5181 2.4803 4.9770 2.2812 2.2248 2.1817 

19!X ENSGACGOOOOOO05365 1.2969 0.7519 0.9554 0.5228 1.7248 1.8274 

Efcab4a 19/X ENSGACGOOOOOO05399 0.4835 0.2017 0.5039 0.2196 2.3973 2.2947 

Them 138 19/X EN SGACGOOOOOO05406 3.8701 2.0856 5.1439 2.1236 1.8556 2.4222 

C11orf10 19/X ENSGACGOOOOOO05414 23.3848 13.4493 31.6032 12.8037 1.7387 2.4683 

EpsBI2 19/X ENSGACGOOOOOO05436 1.2871 0.5974 1.0282 0.6218 2.1544 1.6536 

19!X ENSGACGOOOOOO05442 2.0977 0.9361 1.5476 0.6967 2.2409 2.2214 ....>. 
....>. 

Syt7 19/X EN SGACGOOOOOO05468 0.2698 0.1572 0.3000 0.1445 1.7163 2.0762 N 

19/X ENSGACGOOOOOO05483 8.6818 4.3474 10.0057 4.3902 1.9970 2.2791 

S/c5a22 19/X ENSGACGOOOOOO05489 1.2743 0.6936 1.1100 0.6328 1.8372 1.7540 

19/X ENSGAC GOOO 00005509 1.2281 0.6147 1.4375 0.7398 1.9978 1.9431 

Lrdd 19/X ENSGACGOOOOOO05514 0.5500 0.2596 0.4092 0.1956 2.1189 2.0917 

19/X ENSGACGOOOOOO05541 1.4297 0.8046 1.1155 0.5922 1.7769 1.8837 

Ath/1 19!X ENSGACGOOOOOO05561 5.0890 2.5766 4.1241 2.4614 1.9750 1.6755 

Incenp 19/X ENSGACGOOOOOO05590 11.8943 5.4162 9.5653 4.5221 2.1961 2.1152 

Rab3il1 19/X ENSGACGOOOOOO05613 1.9957 1.0212 1.9375 0.9978 1.9542 1.9417 

Hps5 19/X ENSGACGOOOOOO05632 2.1275 1.0511 2.1682 1.0030 2.0241 2.1617 

Saa/1 19/X ENSGACGOOOOOO05737 3.4757 1.6634 3.7643 1.5439 2.0895 2.4381 

Cd81 19/X ENSGACGOOOOOO05809 1.2623 0.6497 1.6243 0.7749 1.9430 2.0962 

Sigirr 19/X ENSGACGOOOOOO05853 1.9657 1.1185 3.0907 1.6733 1.7575 1.8471 



Normalized Number of Reads (RPKM) Fold Difference 
Flow Cell 1 Flow Cell 2 Flow Cell 1 Flow Cell 2 

Gene Chr EnsembllD Female Male Female Male Female:Male Female:Male 
Ano5 19/X ENSGACGOOOOOO05889 2.7751 1.4343 2.8481 1.5700 1.9347 1.8141 

Gas2 19/X ENSGACGOOOOOO05909 0.4205 0.1835 0.4308 0.1754 2.2911 2.4555 

Ano3 19/X ENSGACGOOOOOO05915 0.2325 0.0950 0.2111 0.1005 2.4473 2.1010 

Fibin 19/X ENSGACGOOOOOO05940 85.2546 47.0416 66.9680 39.1351 1.8123 1.7112 

Pre 1 19/X ENSGACGOOOOOO05957 5.6142 2.2845 4.7922 2.2775 2.4575 2.1042 

Ap4e1 19/X ENSGACGOOOOOO05988 1.7804 0.6996 1.6150 0.9431 2.5447 1.7124 

Gnb5 19/X ENSGACGOOOOOO05996 2.8900 1.3111 2.8898 1.4886 2.2043 1.9414 

Myo5e 19/X ENSGACGOOOOOO06001 0.7413 0.3928 0.6155 0.3189 1.8871 1.9298 

19/X ENSGACGOOOOOO06025 3.0246 1.2904 3.0585 1.4025 2.3439 2.1807 

Rsl24d1 19/X ENSGACGOOOOOO06058 91.6233 40.1084 49.3903 22.3675 2.2844 2.2081 

Tef12 19/X ENSGACG000000061 01 0.6835 0.3070 0.4383 0.2564 2.2261 1.7098 

19/X ENSGACGOOOOOO06110 1.0410 0.5379 0.6920 0.2833 1.9352 2.4423 

Mtmr15 19/X ENSGACGOOOOOO06141 1.9755 0.8328 1.5034 0.6935 2.3720 2.1677 --->. 

->. 

19/X ENSGACGOOOOOO06219 3.6783 1.6847 3.2070 1.8274 2.1833 1.7550 w 

Cep152 19/X ENSGACGOOOOOO06224 0.7940 0.3877 0.5506 0.2740 2.0477 2.0093 

Galk2 19/X ENSGACGOOOOOO06232 3.0978 1.7117 3.4881 1.6661 1.8098 2.0936 

Parp16 19/X ENSGACGOOOOOO06315 4.0763 1.7846 3.9081 2.0998 2.2841 1.8611 

19/X ENSGACGOOOOOO06340 13.4092 6.6704 13.8033 5.9087 2.0103 2.3361 

19/X ENSGACGOOOOOO06351 3.1427 1.6344 5.2221 1.8848 1.9229 2.7706 

Nptn 19/X ENSGACGOOOOOO06370 1.4258 0.7304 1.7810 0.9949 1.9520 1.7901 

Cox5a 19/X ENSGACGOOOOOO06516 31.0289 15.6269 12.4771 6.4867 1.9856 1.9235 

C11orf17 19/X ENSGACGOOOOOO06521 2.7085 0.9464 1.2831 0.7769 2.8619 1.6515 

19/X ENSGACGOOOOOO06644 0.2493 0.1161 0.2689 0.1083 2.1465 2.4819 

Sox6 19/X ENSGACGOOOOOO06649 0.4369 0.2334 0.3853 0.2186 1.8720 1.7628 

C11orf58 19/X EN SGACGOOOOOO06659 8.9017 4.4912 5.8993 3.4470 1.9821 1.7114 

Plekha7 19/X ENSGACGOOOOOO06687 0.3067 0.1523 0.2557 0.1458 2.0142 1.7540 



Normalized Number of Reads (RPKM) Fold Difference 
Flow Cell 1 Flow CeU2 Flow Cell 1 Flow CeU2 

Gene Chr EnsembllD Female Male Female Male Female:Male Female:Male 
Pik3c2a 19/X ENSGACGOOOOOO06738 1.5319 0.8848 1.3981 0.7715 1.7314 1.8121 

Nucb2 19/X ENSGACGOOOOOO06759 2.0360 0.9099 0.9521 0.5272 2.2375 1.8059 

19/X EN SGACGOOOOOO06806 2.3550 1.2141 3.0910 1.2725 1.9398 2.4291 

Alkbh3 19/X ENSGACGOOOOOO06950 2.1585 0.8646 2.4460 0.9589 2.4966 2.5507 

C15orf42 19/X ENSGACGOOOOOO06985 1.5554 0.8176 1.6936 0.8823 1.9025 1.9195 

Ckmt1a 19/X ENSGACGOOOOOO06990 3.5947 1.9383 3.8257 1.9674 1.8546 1.9445 

Isg20 19/X ENSGACGOOOOOO07047 16.1038 8.4091 20.3579 9.8178 1.9151 2.0736 

Rlbp1 19/X ENSGACGOOOOOO07054 0.5317 0.2020 0.5115 0.1239 2.6324 4.1278 

Abhd2 19/X ENSGACGOOOOOO07084 0.6890 0.3653 0.7847 0.4293 1.8863 1.8278 

Acan 19/X ENSGACGOOOOOO07109 1.2645 0.5470 0.9912 0.5821 2.3117 1.7027 

Hisppd2a 19/X ENSGACGOOOOOO07114 0.7505 0.3742 0.5784 0.2908 2.0053 1.9891 

19/X ENSGACGOOOOOO07133 12.0867 4.7764 10.8115 4.1968 2.5305 2.5762 

Map1a 19/X ENSGACGOOOOOO07135 2.7925 1.4744 2.1454 1.2242 1.8939 1.7525 ->. 
.....l. 

Scamp2 19/X ENSGACGOOOOOO07153 2.3744 1.1755 2.3290 1.1895 2.0200 1.9579 ~ 

Mp1 19/X ENSGACGOOOOOO07166 9.7065 4.8716 11.4215 5.4640 1.9924 2.0903 

Psma4 19/X ENSGACGOOOOOOO7210 2.5450 1.0894 1.3334 0.6272 2.3362 2.1259 

Oaz2 19/X ENSGACGOOOOOOO7234 1.4331 0.8257 1.4706 0.8127 1.7357 1.8094 

Ppib 19/X ENSGACGOOOOOOO7238 75.8598 39.0403 59.3243 31.6828 1.9431 1.8724 

Snx22 19/X ENSGACGOOOOOOO7247 0.8092 0.3019 0.3610 0.1615 2.6804 2.2359 

19/X EN SGACGOOOOOOO7281 0.8807 0.4056 0.6510 0.2911 2.1713 2.2359 

19/X ENSGACGOOOOOO07340 40.6477 18.6522 51.1617 21.5102 2.1792 2.3785 

Ireb2 19/X ENSGACGOOOOOO07341 5.2563 2.4965 4.7574 2.7210 2.1055 1.7484 

S/c25a44 19/X ENSGACGOOOOOO07371 6.3760 3.7098 8.0767 4.1348 1.7187 1.9533 

Wdr61 19/X ENSGACGOOOOOO07380 4.2347 2.3741 3.4149 1.7825 1.7837 1.9158 

Snupn 19/X ENSGACGOOOOOO07450 3.0922 1.6115 3.0050 1.5695 1.9188 1.9147 

Cspg4 19/X ENSGACGOOOOOO07480 3.4530 1.9753 3.5479 2.1530 1.7481 1.6478 



Normalized Number of Reads (RPKM) Fold Difference 
Flow Cell 1 Flow Cell 2 Flow Cell 1 Flow Cell 2 

Gene Chr EnsembllD Female Male Female Male Female:Male Female:Male 
Lamb4 19/X ENSGACGOOOOOO07499 8.0586 4.2936 6.7871 3.7517 1.8769 1.8091 

Nup160 19/X ENSGACGOOOOOO07560 4.4881 2.5923 4.0584 2.1110 1.7313 1.9225 

Tbc1d15 19/X ENSGACGOOOOOO07682 2.4181 1.2534 1.4482 0.7486 1.9292 1.9345 

19/X ENSGACGOOOOOOO7729 1.0903 0.6027 0.8877 0.4569 1.8090 1.9428 

Mphosph6 19/X ENSGACGOOOOOOO7779 2.3912 1.3885 2.0294 0.9489 1.7222 2.1387 

Nox5 19/X ENSGACGOOOOOO07833 0.3527 0.1238 0.3249 0.1545 2.8487 2.1028 

19/X ENSGACGOOOOOO07854 1.9959 1.0247 1.6247 0.6752 1.9478 2.4060 

19/X ENSGACGOOOOOO07952 3.7936 2.0079 2.4522 1.0453 1.8894 2.3459 

Nedd1 19/X ENSGACGOOOOOO07956 3.1110 1.4888 3.1770 1.6886 2.0896 1.8814 

Prr51 19/X ENSGACGOOOOOO08007 0.1649 0.0885 0.2040 0.0743 1.8646 2.7441 

Fam96a 19/X ENSGACGOOOOOO08052 2.4626 1.3207 2.5524 0.9460 1.8646 2.6980 

Spg11 19/X ENSGACGOOOOOO08057 0.9581 0.5125 1.0360 0.5773 1.8694 1.7945 

Znf277 19/X ENSGACGOOOOOO08086 3.8157 1.9043 3.5177 1.8355 2.0037 1.9165 ->. 
->. 

19/X ENSGACGOOOOOO08153 13.6466 6.9059 10.4447 5.8327 1.9761 1.7907 01 

Dus21 19/X ENSGACGOOOOOO08159 1.5728 0.6640 1.0355 0.5327 2.3685 1.9438 

Tnni2 19/X ENSGACGOOOOOO08321 30.0868 16.7788 20.1940 11.1892 1.7931 1.8048 

Tnni2 19/X ENSGACGOOOOOO08333 148.7639 78.9453 101.8275 61.0437 1.8844 1.6681 

Lsp1 19/X ENSGACGOOOOOO08376 2.2229 1.0597 0.9072 0.5410 2.0977 1.6769 

19/X ENSGACGOOOOOO08450 3.6138 1.5395 4.5367 2.3599 2.3474 1.9225 

19/X ENSGACGOOOOOO08494 9.2307 4.6454 6.2002 3.1698 1.9871 1.9560 

Zdhhc7 19/X ENSGACGOOOOOO08550 3.1384 1.6289 3.1003 1.8585 1.9267 1.6682 

C19orf40 19/X ENSGACGOOOOOO08589 1.8969 0.8386 1.4869 0.7162 2.2620 2.0762 

C19orf40 19/X ENSGACGOOOOOO08599 3.4143 1.6755 2.9196 1.4338 2.0377 2.0363 

Ptprz1 19/X ENSGACGOOOOOO08617 0.5254 0.3056 0.4640 0.2392 1.7191 1.9396 

Cadps2 19/X EN SGACGOOOOOO08655 0.2846 0.1622 0.3153 0.1600 1.7546 1.9705 

/qub 19/X ENSGACGOOOOOO08678 0.3553 0.1270 0.2393 0.1427 2.7969 1.6769 



Normalized Number of Reads (RPKM) Fold Difference 
Flow Cell 1 Flow Cell 2 Flow Cell 1 Flow Cell 2 

Gene Chr EnsembllD Female Male Female Male Female:Male Female:Male 
Lmod2 19/X ENSGACGOOOOOO08702 0.8791 0.3553 0.6619 0.3070 2.4742 2.1561 

Pot1 19/X ENSGACGOOOOOO08743 0.5708 0.2582 0.4284 0.2428 2.2104 1.7641 

19/X ENSGACGOOOOOO08779 4.7496 1.7790 5.6087 2.6598 2.6698 2.1087 

19/X ENSGACGOOOOOO08783 4.6046 1.8786 5.1008 1.8963 2.4511 2.6899 

Pim3 19/X ENSGACGOOOOOO08837 0.5696 0.2102 0.4360 0.1792 2.7095 2.4332 

Ftsj1 19/X ENSGACGOOOOOO08843 5.1773 2.4446 4.1695 2.0065 2.1179 2.0780 

19/X ENSGACGOOOOOO08869 1.7679 0.9481 1.3606 0.6085 1.8646 2.2359 

19/X ENSGACGOOOOOO08872 2.6127 1.2619 2.3370 1.1307 2.0704 2.0669 

Mupcdh 19/X ENSGACGOOOOOO08907 0.6477 0.2728 0.7113 0.3105 2.3741 2.2909 

19/X ENSGACGOOOOOO08928 3.5453 1.7588 2.8564 1.3601 2.0158 2.1001 

Atp2b1 19/X ENSGACGOOOOOO08957 0.0390 0.0223 0.0325 0.0134 1.7481 2.4222 

Gtse1 19/X ENSGACGOOOOOO08981 1.7568 0.9703 1.6240 0.8966 1.8105 1.8113 

Cftr 19/X ENSGACGOOOOOO09039 0.3805 0.2102 0.3531 0.1571 1.8098 2.2477 ->. 
~ 

Wdr51b 19/X ENSGACGOOOOOO09335 0.2143 0.1221 0.2571 0.0911 1.7562 2.8228 Q) 

19/X ENSGACGOOOOOO09373 1.1844 0.6776 0.7501 0.3992 1.7481 1.8791 

Cep290 19/X ENSGACGOOOOOO09388 0.6705 0.2902 0.4538 0.2754 2.3108 1.6481 

Eif4g2 19/X ENSGACGOOOOOO09454 10.6514 5.1111 8.4204 4.3416 2.0840 1.9395 

Lrrk2 19/X ENSGACGOOOOOO09572 1.0425 0.4667 1.0606 0.4913 2.2337 2.1588 

SIc2a13 19/X ENSGACGOOOOOO09605 1.2150 0.5198 1.3707 0.6161 2.3377 2.2246 

Kif21a 19/X ENSGACGOOOOOO09626 1.9892 1.0137 1.5338 0.8413 1.9623 1.8231 

Mgat4c 19/X ENSGACGOOOOOO09714 1.3020 0.4867 1.2335 0.5602 2.6753 2.2020 

Rnf141 19/X ENSGACGOOOOOO09717 1.1587 0.5662 1.2509 0.6868 2.0465 1.8212 

Ampd3 19/X ENSGACGOOOOOO09729 1.6513 0.7643 1.4442 0.7578 2.1605 1.9056 

Swap 70 19/X ENSGACGOOOOOO09748 1.7054 0.7423 1.1952 0.5104 2.2974 2.3415 

Csk 19/X ENSGACGOOOOOO09794 1.1446 0.6366 1.3749 0.6115 1.7980 2.2486 

Ada! 19/X ENSGACGOOOOOO09803 15.5190 5.9394 12.2378 5.6551 2.6129 2.1640 



Normalized Number of Reads (RPKM) Fold Difference 
Flow Cell 1 Flow Cell 2 Flow Cell 1 Flow Cell 2 

Gene Chr EnsembllD Female Male Female Male Female:Male Female:Male 
Nat10 19/X ENSGACGOOOOOO09849 10.9333 4.5342 9.6843 4.3183 2.4113 2.2426 
Alx4 19/X ENSGACGOOOOOO09885 0.1406 0.0714 0.1222 0.0677 1.9705 1.8059 
Tspan18 19/X ENSGACGOOOOOO09892 1.0194 0.4769 0.8541 0.3468 2.1374 2.4628 
Cd82 19/X ENSGACGOOOOOO09906 1.0310 0.5469 0.9773 0.4160 1.8853 2.3494 
TP53i11 19/X ENSGACGOOOOOO09918 0.3092 0.1273 0.1863 0.0591 2.4289 3.1506 

19/X ENSGACGOOOOOO09927 8.6696 3.2108 6.8822 3.4344 2.7001 2.0039 
ReIn 19/X ENSGACGOOOOOO09959 2.5269 1.4737 2.5004 1.3819 1.7147 1.8094 
Plekha5 19/X ENSGACGOOOOO010014 0.6396 0.3350 0.6016 0.3218 1.9095 1.8694 
Gpr22 19/X ENSGACG0000001 0047 1.1029 0.5144 1.2917 0.4126 2.1443 3.1303 
Nt5de3 19/X ENSGACGOOOOOO10077 4.6617 2.2897 3.5702 2.0446 2.0359 1.7461 
Kend2 19/X ENSGACGOOOOOO10094 0.2566 0.1084 0.2438 0.1311 2.3666 1.8595 
FIne 19/X ENSGACGOOOOOO10114 11.4345 6.1562 9.0375 5.1996 1.8574 1.7381 
Fgd6 19/X ENSGACGOOOOO010186 0.5157 0.1990 0.4095 0.1691 2.5912 2.4222 ->. 

->. 

Fbxl22 19/X ENSGACGOOOOOO10198 7.2734 3.5191 9.1321 4.8264 2.0668 1.8921 --...J 

19/X ENSGACGOOOOOO10201 1.8554 1.0430 1.5441 0.8798 1.7789 1.7551 

Lrre61 19/X ENSGACGOOOOO010239 1.7607 0.9653 2.9862 1.2121 1.8241 2.4636 

Idh3a 19/X ENSGACGOOOOOO10244 2.6816 1.4456 2.9017 1.3727 1.8551 2.1138 

Dnaja4 19/X ENSGACGOOOOOO10346 72.4621 35.1211 65.6927 31.2630 2.0632 2.1013 
Rab8b 19/X ENSGACGOOOOO010417 1.9821 1.1436 2.0657 1.0983 1.7333 1.8808 

Kti12 19/X ENSGACGOOOOOO10443 2.6898 1.5361 2.5637 1.5538 1.7511 1.6499 

19/X ENSGACGOOOOOO10453 4.7102 2.1478 3.9183 1.7916 2.1930 2.1870 

Tspan3 19/X ENSGACGOOOOOO 10459 13.4750 5.9786 14.5301 6.0680 2.2539 2.3946 

Ren2 19/X ENSGACGOOOOOO10496 3.5597 1.6136 2.4460 1.3128 2.2060 1.8633 

Seaper 19/X ENSGACGOOOOOO10509 0.6695 0.3774 0.5294 0.2601 1.7739 2.0350 

Etfa 19/X ENSGACGOOOOOO10550 17.6959 8.6824 18.2493 7.9930 2.0381 2.2832 

Laetb 19/X ENSGACGOOOOOO10620 4.5732 2.5130 4.5656 2.5718 1.8198 1.7752 



Normalized Number of Reads (RPKM) Fold Difference 
Flow Cell 1 Flow Cell 2 Flow Cell 1 Flow Cell 2 

Gene Chr EnsembllD Female Male Female Male Female:Male Female:Male 
Fam148a 19/X ENSGACGOOOOOO10669 0.5541 0.2882 0.4523 0.2312 1.9229 1.9564 
Narg2 19/X ENSGACGOOOOOO10682 2.2136 1.0731 2.2917 1.1034 2.0629 2.0769 
Anxa2 19/X ENSGACGOOOOOO10689 16.9845 6.9026 10.7535 5.0969 2.4606 2.1098 
St8sia2 19/X ENSGACGOOOOOO 10746 0.6584 0.2608 0.6505 0.3317 2.5240 1.9607 
Pex11a 19/X ENSGACGOOOOOO 10771 1.3308 0.7258 1.8517 1.0869 1.8335 1.7035 
Fkbp8 19/X ENSGACGOOOOOO 10785 0.0283 0.1127 0.0570 0.1113 0.2510 0.5124 

Blm 19/X ENSGACGOOOOOO10863 4.4099 2.1818 4.5869 2.5582 2.0212 1.7931 

Cede34 19/X ENSGACGOOOOO010963 6.9858 2.0057 3.6996 1.3358 3.4829 2.7695 

Ceer5 19/X ENSGACGOOOOOO10978 8.8876 4.4983 8.1613 4.2709 1.9758 1.9109 

Cede77 19/X ENSGACGOOOOOO10988 1.6423 0.7766 1.1892 0.4711 2.1147 2.5244 

Ush1e 19/X ENSGACGOOOOOO11004 1.9527 0.8616 1.7511 0.8677 2.2663 2.0180 

Ptprj 19/X ENSGACGOOOOOO11062 1.7867 0.8161 2.1201 0.9030 2.1893 2.3477 

Th 19/X ENSGACGOOOOOO11104 0.1131 0.0368 0.1846 0.0944 3.0766 1.9564 ->. 
->. 

Cede34 19/X ENSGACGOOOOOO11173 3.8144 1.2360 3.2873 1.9489 3.0862 1.6867 co 
Rab19 19/X ENSGACGOOOOOO11175 2.1023 1.0088 1.8450 0.9204 2.0840 2.0046 

Brsk2 19/X ENSGACGOOOOOO11262 0.0843 0.1985 0.0578 0.1326 0.4247 0.4359 

C15orf58 19/X ENSGACGOOOOOO11544 5.3080 2.1590 6.5585 3.1009 2.4586 2.1150 

Plekhg7 19/X ENSGACGOOOOOO11708 0.1723 0.0719 0.1658 0.0989 2.3973 1.6769 

19/X ENSGACGOOOOOO11725 1.7887 0.7106 1.5189 0.7126 2.5172 2.1316 

19/X ENSGACGOOOOOO11784 4.3729 2.1183 6.8454 3.8708 2.0644 1.7685 

19/X ENSGACGOOOOOO11879 1.4938 0.8105 1.7270 0.8306 1.8430 2.0791 

19/X ENSGACGOOOOOO11906 1.2049 0.5875 1.3598 0.6777 2.0511 2.0064 

Chrm2 19/X ENSGACGOOOOOO11914 1.7002 0.8448 1.7557 0.5786 2.0124 3.0344 

Lrre17 19/X ENSGACGOOOOOO12034 1.5153 0.8148 1.2882 0.6738 1.8598 1.9117 

19/X ENSGACGOOOOOO12049 0.3952 0.1641 0.4415 0.2559 2.4084 1.7248 

19/X ENSGACGOOOOOO12110 13.1699 25.0856 9.2685 19.9242 0.5250 0.4652 



Normalized Number of Reads (RPKM) Fold Difference 
Flow Cell 1 Flow CeU2 Flow Cell 1 Flow Cell 2 

Gene Chr EnsembllD Female Male Female Male Female:Male Female:Male 
Cpt1b 19/X ENSGACGOOOOOO12306 4.4887 2.3284 4.2063 1.9413 1.9279 2.1668 

Chkb 19/X ENSGACGOOOOOO12349 6.9423 3.2038 9.8128 3.9099 2.1669 2.5098 

Shank3 19/X ENSGACGOOOOO012458 0.0692 0.1638 0.0729 0.1546 0.4226 0.4718 

Ripk3 19/X ENSGACGOOOOOO12580 4.9441 2.7036 4.9294 2.9793 1.8287 1.6546 

19/X ENSGACGOOOOO012826 0.0877 0.1630 0.0337 0.1006 0.5379 0.3354 

Kcp 19/X ENSGACGOOOOOO12835 1.2970 0.7570 1.2465 0.6629 1.7134 1.8802 

Miox 19/X ENSGACGOOOOOO12900 0.3860 0.0812 0.1748 0.0912 4.7547 1.9165 

Lmf2 19/X ENSGACGOOOOOO12928 5.7741 2.7059 5.4555 2.8865 2.1339 1.8900 

B4galnt3 19/X ENSGACGOOOOOO12971 1.0809 0.5251 1.0775 0.5560 2.0585 1.9378 

C12orf64 19/X ENSGACGOOOOOO13089 0.0228 0.0490 0.0059 0.0367 0.4661 0.1597 

Cd9 19/X ENSGACGOOOOOO13122 9.7189 4.5804 10.0906 5.2122 2.1219 1.9360 

C15orf26 19/X ENSGACGOOOOOO13167 0.4444 0.1144 0.3762 0.1428 3.8846 2.6352 

19/X ENSGACGOOOOOO13175 1.1139 0.4978 1.4883 0.6124 2.2375 2.4303 -" 
-" 

Lysmd4 19/X ENSGACGOOOOO013238 3.0950 1.5996 2.5745 1.3009 1.9348 1.9791 <.0 

19/X ENSGACGOOOOOO 13258 1.9901 0.9900 2.0810 0.8439 2.0103 2.4661 

19/X ENSGACGOOOOO013321 2.4578 1.3603 2.3599 1.3701 1.8068 1.7224 

Cry 1 19/X ENSGACGOOOOOO13480 2.4593 1.2425 2.0573 1.2421 1.9793 1.6562 

19/X ENSGACGOOOOOO13483 38.9986 21.2962 35.4363 19.3921 1.8312 1.8274 

Chst1 19/X ENSGACGOOOOOO13487 0.5397 0.1835 0.5845 0.2690 2.9416 2.1726 

19/X ENSGACGOOOOOO13544 0.1965 0.3736 0.1776 0.3382 0.5259 0.5251 

Ttc38 19/X ENSGACGOOOOOO13552 3.8466 2.1199 4.2373 2.1458 1.8145 1.9747 

Efcab4b 19/X ENSGACGOOOOOO 13617 0.3968 0.1951 0.2704 0.1280 2.0341 2.1117 

Wfdc1 19/X ENSGACGOOOOOO13768 6.8134 3.4777 5.1690 2.7110 1.9591 1.9067 

Hsbp1 19/X ENSGACGOOOOO013784 48.0075 26.5161 45.7401 27.5255 1.8105 1.6617 

Top 1 19/X ENSGACGOOOOO013788 1.0041 0.3656 1.0428 0.4360 2.7465 2.3917 

Anapc13 19/X ENSGACGOOOOO013894 4.6656 2.1448 6.5188 2.4375 2.1754 2.6743 



Normalized Number of Reads (RPKM) Fold Difference 
Flow Cell 1 Flow Cell 2 Flow Cell 1 Flow Cell 2 

Gene Chr EnsembllD Female Male Female Male Female:Male Female:Male 
Arl2bp 19/X ENSGACGOOOOOO13899 1.3778 0.6072 1.1508 0.4779 2.2692 2.4079 

Pllp 19/X ENSGACGOOOOOO13906 1.9182 1.0267 2.4152 1.0734 1.8684 2.2500 

83gnt9 19/X ENSGACGOOOOOO13963 0.6097 2.0346 0.6126 2.1102 0.2997 0.2903 

Cbfb 19/X ENSGACGOOOOOO13972 0.7316 0.4074 0.3674 0.2125 1.7958 1.7286 

19/X ENSGACGOOOOOO13996 1.9074 0.9651 1.8062 0.8019 1.9764 2.2524 

19/X ENSGACGOOOOO014068 5.4609 2.8698 6.7343 2.8489 1.9029 2.3638 

Tmeo7 19/X ENSGACGOOOOO014081 1.7758 1.0167 2.1438 1.1086 1.7466 1.9338 

Oyx1e1 19/X ENSGACGOOOOO014118 0.6934 0.3110 0.6445 0.2832 2.2300 2.2758 

Enpp2 20 ENSGACGOOOOOO04492 0.0470 0.0953 0.0603 0.1079 0.4936 0.5590 

Adey2 20 ENSGACGOOOOOO06520 0.0402 0.0738 0.0393 0.0763 0.5452 0.5148 

20 ENSGACGOOOOOO07546 0.0924 0.1839 0.1092 0.1941 0.5027 0.5624 

20 ENSGACGOOOOOO07557 0.0788 0.1508 0.0920 0.1611 0.5229 0.5713 

Sert1 20 ENSGACGOOOOOO08982 0.0441 0.1155 0.0659 0.1264 0.3814 0.5217 ->. 

N 
Cd226 21 ENSGACGOOOOOO02708 0.1854 0.3535 0.2378 0.4254 0.5244 0.5590 0 

Un ENSGACGOOOOOOO0119 0.2847 0.7464 0.3651 0.8166 0.3814 0.4472 

Pif-1 Un ENSGACGOOOOOOO0172 0.1134 0.2121 0.1287 0.2202 0.5347 0.5844 

Un ENSGACGOOOOOOO0320 0.0383 0.2193 0.0984 0.1870 0.1748 0.5261 

Sema5b Un ENSGACGOOOOOOO0378 0.1223 0.2872 0.1568 0.3106 0.4256 0.5049 

Pif-1 Un ENSGACGOOOOOOO0540 0.1303 0.3356 0.1616 0.3340 0.3885 0.4839 

Zfp106 Un ENSGACGOOOOOOO0693 0.2297 0.1210 0.2404 0.1387 1.8979 1.7328 

Un ENSGACGOOOOOOO0796 0.2342 0.1288 0.3697 0.2274 1.8180 1.6261 

Un ENSGACGOOOOOOO0900 0.0530 0.4170 0.0340 0.3345 0.1271 0.1016 

Tfr2 Un ENSGACGOOOOOO01165 0.2267 0.0648 0.2132 0.1300 3.4961 1.6397 

Un EN SGACGOOOOOOO 1482 0.0422 0.3316 0.0270 0.3870 0.1271 0.0699 

Chek2 Un ENSGACGOOOOOO 10772 0.0995 0.2609 0.1914 0.3996 0.3814 0.4791 

Gtf2ird2 Un ENSGACGOOOOOO13474 0.0975 1.1509 0.3128 1.3990 0.0848 0.2236 



Normalized Number of Reads (RPKM) Fold Difference 
Flow Cell 1 Flow Cell 2 Flow Cell 1 Flow Cell 2 

Gene Chr EnsembllD Female Male Female Male Female:Male Female:Male 
Kcna6 Un ENSGACGOOOOOO 15703 0.2807 0.6690 0.3300 0.6708 0.4195 0.4919 

EpsB/2 Un ENSGACGOOOOO018690 1.7799 0.7487 1.2086 0.7408 2.3774 1.6316 

Fads2 Un ENSGACGOOOOO018692 1.0333 0.5199 0.5890 0.2415 1.9873 2.4392 

-" 
N 
->. 
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