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Abstract 

Regulatory factor binding to genomic DNA protects the underlying sequence from cleavage by 

DNaseI, leaving nucleotide-resolution footprints. Using genomic DNaseI footprinting across 41 

diverse cell and tissue types, we detected 45 million factor occupancy events within regulatory 

regions, representing differential binding to 8.4 million distinct short sequence elements.  Here we 

show that this small genomic sequence compartment, roughly twice the size of the exome, encodes 

an expansive repertoire of conserved recognition sequences for DNA-binding proteins that nearly 

doubles the size of the human cis-regulatory lexicon.  We find that genetic variants affecting allelic 

chromatin states are concentrated in footprints, and that these elements are preferentially 

sheltered from DNA methylation.  High-resolution DNaseI cleavage patterns mirror nucleotide-level 

evolutionary conservation and track the crystallographic topography of protein-DNA interfaces, 

indicating that transcription factor structure has been evolutionarily imprinted on the human 

genome sequence.  We identify a stereotyped 50 base-pair footprint that precisely defines the site 

of transcript origination within thousands of human promoters.  Finally, we describe a large 

collection of novel regulatory factor recognition motifs that are highly conserved in both sequence 

and function, and exhibit cell-selective occupancy patterns that closely parallel major regulators of 

development, differentiation, and pluripotency.   

 

 

Introduction 

Sequence-specific transcription factors (TFs) interpret the signals encoded within regulatory DNA. 

 The discovery of DNaseI footprinting over 30 years ago1 revolutionized the analysis of cis-

regulatory sequences in diverse organisms, and directly enabled the discovery of the first human 

sequence-specific transcription factors2. Binding of TFs to regulatory DNA regions in place of 

canonical nucleosomes triggers chromatin remodeling, resulting in nuclease hypersensitivity3. 

Within DNaseI hypersensitive sites (DHSs), DNaseI cleavage is not uniform; rather, punctuated 

binding by sequence-specific regulatory factors occludes bound DNA from cleavage, leaving 

‘footprints’ that demarcate TF occupancy at nucleotide resolution1,4 (Figure 1a). DNaseI 

footprinting has been applied widely to study the dynamics of transcription factor occupancy and 

cooperativity within regulatory DNA regions of individual genes5, and to identify cell- and lineage-

selective transcriptional regulators6. 
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Regulatory DNA is densely populated with DNaseI footprints 

To map DNaseI footprints comprehensively within regulatory DNA, we adapted digital genomic 

footprinting4 to human cells. The ability to resolve DNaseI footprints sensitively and precisely is 

critically dependent on the local density of mapped DNaseI cleavages (Supplementary Figs. 1a-

d), and efficient footprinting of a large genome such as human requires substantial concentration of 

DNaseI cleavages within the small fraction (~1-3%) of the genome contained in DNaseI-

hypersensitive regions.  We selected highly enriched DNaseI cleavage libraries from 41 diverse cell 

types in which 53-81% of DNaseI cleavage sites localized to DNaseI-hypersensitive regions7 

(Supplementary Table 1), representing nearly 10-fold higher signal-to-noise ratio vs. prior results 

from yeast4, and 2- to 5-fold greater enrichment than achieved using end-capture of single DNaseI 

cleavages8,9.  We then performed deep sequencing of these libraries, and obtained 14.9 billion 

Illumina sequence reads, 11.2 billion of which mapped to unique locations in the human genome 

(Supplementary Table 1).  We achieved an average sequencing depth of ~273 million DNaseI 

cleavages per cell type that enabled extensive and accurate discrimination of DNaseI footprints.  

To detect DNaseI footprints systematically, we implemented a detection algorithm based on 

the original description of quantitative DNaseI footprinting1 (Supplementary Methods). We 

identified an average of ~1.1 million high-confidence (FDR 1%) footprints per cell type (range 

434,000 to 2.3 million; Supplementary Table 1), and collectively 45,096,726 6-40 bp footprint 

events across all cell types. We resolved cell-selective footprint patterns to reveal 8.4 million 

distinct footprinted elements, each occupied in one or more cell types. At least one footprint was 

found in >75% of DHSs (Supplementary Figs. 1c,d and Supplementary Table 2), with detection 

strongly dependent on the number of mapped DNaseI cleavages within each DHS.  99.8% of DHSs 

with >250 mapped DNaseI cleavages contained at least one footprint, indicating that DHSs are not 

simply open or nucleosome-free chromatin features, but are constitutively populated with DNaseI 

footprints.  Modeling DNaseI cleavage patterns using empirically derived intrinsic DNA cleavage 

propensities for DNaseI showed that only a miniscule fraction (0.24%) of discovered FDR 1% 

footprints from cell and tissue samples could be caused by inherent DNaseI sequence specificity 

(Supplementary Methods).  

DNaseI footprints were distributed throughout the genome, including intergenic regions 

(45.7%), introns (37.7%), upstream of transcriptional start sites (8.9%), and in 5’ and 3’ UTRs 

(1.4% and 1.3%, respectively; Supplementary Figs. 2a,b). DNaseI footprints were enriched in 
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promoters (3.6 fold; P < 2.2x10-16; Binomial test) and 5’ UTRs (2.4 fold; P < 2.2x10-16; Binomial test), 

commensurate with high DNaseI cleavage densities observed in these regions.    We found that 

2.0% of footprints localized within exons, raising the possibility that occupancy by DNA binding 

proteins could further restrict sequence diversity within coding DNA, thus superimposing an 

unexpected layer of constraint on codon usage.  

Quantitative markers of in vivo regulatory factor occupancy  

We next examined the correspondence between DNaseI footprints and known regulatory factor 

recognition sequences within DNaseI hypersensitive chromatin.  Comprehensive scans of DNaseI 

hypersensitive regions for high confidence  matches to all recognized TF motifs in the TRANSFAC10 

and JASPAR11 databases revealed striking enrichment of motifs within footprints (P ≈ 0, Z-score = 

204.22 for TRANSFAC; Z-score = 169.88 for JASPAR;  Fig. 1b and Supplementary Fig. 3).   

To quantify the occupancy at TF recognition sequences within DHSs genome-wide, we 

computed for each instance a footprint occupancy score (FOS) relating the density of DNaseI 

cleavages within the core recognition motif to cleavages in the immediately flanking regions 

(Supplementary Methods).  The FOS can be used to rank motif instances by the ‘depth’ of the 

footprint at that position, and is expected to provide a quantitative measure of factor occupancy1.  

To examine this relationship for a well-studied sequence-specific regulator (NRF112), we plotted 

DNaseI cleavage patterns surrounding all 4,262 NRF1 motifs contained within DNaseI 

hypersensitive sites and ranked these by FOS. While only a subset of these motif instances (2,351) 

coincided with high-confidence footprints, the vast majority of NRF1 motif instances in DNaseI 

footprints (89%) overlapped reproducible NRF1 ChIP-seq peaks (Fig. 1c). In parallel, we analyzed 

nucleotide-level evolutionary conservation patterns around NRF1 binding sites, revealing that FOS 

closely parallels phylogenetic conservation within the core motif region, suggesting strong selection 

on factor occupancy (Fig. 1c). We observed a nearly monotonic relationship between FOS and ChIP-

seq signal intensities at NRF1 binding sites within K562 DNaseI footprints (Fig. 1d).  Similarly 

strong correlations between footprint occupancy and either ChIP-seq signal or phylogenetic 

conservation were evident for diverse factors (Fig. 1d and Supplementary Figs. 4a-d). We found 

footprint occupancy and nucleotide-level conservation correlated for 80% of all TF motifs in the 

TRANSFAC database, of which 50% were statistically significant (P < 0.05; Supplementary 

Methods). This relationship between footprint occupancy and conservation is most readily 

explained by evolutionary selection on factor occupancy, with higher conservation of higher affinity 



5 

 

binding sites.  Taken together, these results indicate that footprint occupancy provides a 

quantitative measure of sequence-specific regulatory factor occupancy that closely parallels 

evolutionary constraint and ChIP-seq signal intensity.   

To validate the potential for selective binding of footprints by factors predicted on the basis 

of motif-to-footprint matching, we developed an approach to quantify specific occupancy in the 

context of a complex TF milieu using targeted mass spectrometry (DNA interacting protein 

precipitation or DIPP; Methods).    Using DIPP, we affirmed specific binding by several different 

classes of TFs (Supplementary Figs. 5a-e).  Together with the analysis of ChIP-seq data described 

above, these results indicate that the localization of TF recognition motifs within DNaseI footprints 

can accurately illuminate the genomic protein occupancy landscape. 

Footprints harbor functional variants and are sheltered from DNA methylation 

The potential for single nucleotide variants within a transcription factor recognition sequence to 

abrogate binding of its cognate factor is well known13.   The depth of sequencing performed in the 

context of our footprinting experiments provided hundreds- to thousands-fold coverage of most 

DHSs, enabling precise quantification of allelic imbalance within DHSs harboring heterozygous 

variants.  We scanned all DHSs for heterozygous single nucleotide variants identified by the 1000 

Genomes Project14 and measured, for each DHS containing a single heterozygous variant, the 

proportion of reads from each allele.  We identified likely functional variants conferring significant 

allelic imbalance in chromatin accessibility and analyzed their distribution relative to DNaseI 

footprints.  This analysis revealed significant enrichment (P < 2.2x10-16; Fisher’s exact test) of such 

variants within DNaseI footprints (Supplementary Fig. 6).  For example, rs4144593 is a common 

T/C variant that lies within a DHS on chromosome 9.  This variant falls on a high-information 

position within an NF1/CTF1 footprint and substantially disrupts footprinting of this motif, 

resulting in allelic imbalance in chromatin accessibility (Fig. 2a). 

Protein-DNA interactions are also sensitive to cytosine methylation15,16. Comparing DNaseI 

footprints and whole genome bisulfite sequencing methylation data from pulmonary fibroblasts 

(IMR90),  we found that CpG dinucleotides contained within DNaseI footprints were significantly 

less methylated than CpGs in non-footprinted regions of the same DHS (Mann-Whitney test;P < 

2.2x10-16;  Fig. 2b).  Footprints therefore appear to be selectively sheltered from DNA methylation, 

suggesting a widespread connection between regulatory factor occupancy and nucleotide-level 

patterning of epigenetic modifications. 
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Transcription factor structure is imprinted on the human genome 

We observed surprisingly heterogeneous base-to-base variation in DNaseI cleavage rates within the 

footprinted recognition sequences of different regulatory factors.  And yet, the per site cleavage 

profiles for individual factors were highly stereotyped, with nearly identical local cleavage patterns 

at thousands of genomic locations (Supplementary Fig. 7).  This raised the possibility that DNaseI 

cleavage patterns may provide information concerning the morphology of the DNA-protein 

interface. We obtained the available DNA-protein co-crystal structures for human transcription 

factors, and mapped aggregate DNaseI cleavage patterns at individual nucleotide positions onto the 

DNA backbone of the co-crystal model.  Fig. 3a and Supplementary Fig. 8a show two examples, 

USF17 and SRF18.  For both factors, DNaseI cleavage patterns clearly parallel the topology of the 

protein-DNA interface, including a marked depression in DNaseI cleavage at nucleotides involved in 

protein-DNA contact, and increased cleavage at exposed nucleotides such as those within the 

central pocket of the leucine zipper. These data show that nucleotide-level aggregate DNaseI 

cleavage patterns reflect fundamental features of the protein-DNA interaction interface at 

unprecedented resolution.   

We next asked how these patterns related to evolutionary conservation.  Plotting 

nucleotide-level aggregate DNaseI cleavage in parallel with per-nucleotide vertebrate conservation 

calculated by phyloP19 revealed striking antiparallel patterning of cleavage vs. conservation across 

nearly all motifs examined (six representative examples are shown in Fig. 3b and Supplementary 

Fig. 8b).  Surprisingly, conservation is not limited to only DNA contacting protein residues, but 

exhibits graded changes that mirror DNaseI accessibility across the entirety of the protein-DNA 

interface (Supplementary Figs. 8c,d).  Taken together, these results imply that regulatory DNA 

sequences have evolved to fit the continuous morphology of the transcription factor-DNA binding 

interface. 

A stereotyped 50 bp footprint localizes transcription initiation within promoters 

Transcription initiation requires the binding of multi-protein complexes that position RNA 

polymerase II (PolII)20-23.  Using a modified footprint detection algorithm designed to detect larger 

features (Supplementary Methods), we scanned the regions upstream from Gencode 

transcriptional start sites (TSSs) and identified highly stereotyped ~80bp chromatin structure 

comprising a prominent ~50 bp central DNaseI footprint, flanked symmetrically by ~15 bp regions 
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of uniformly elevated DNaseI cleavage (Fig. 4a).  Alignment of per-nucleotide DNaseI cleavage 

profiles from 5,041 prominent footprints mapped in different K562 promoters highlights the 

homogeneous, nearly invariant nature of the structure (Fig. 4b).  

Plotting evolutionary conservation in parallel with DNaseI cleavage revealed two distinct 

peaks in evolutionary conservation within the central footprint (Fig. 4c) compatible with binding 

sites for paired canonical sequence-specific TFs.  The density of CAGE tags (Fig. 4d; green line) and 

5’ ends of expressed sequenced tags (ESTs) (Fig. 4d; orange line) relative to the central ~50 bp 

footprint revealed that, at the vast majority of promoters, RNA transcript initiation localized 

precisely within the stereotyped footprint. It is notable that the location of this footprint is often 

offset, typically 5’, from many Gencode-annotated TSSs. This likely derives from the incomplete 

nature of many of the 5’ transcript ends used to define TSSs24.   

These data together define a new high-resolution chromatin structural signature of 

transcription initiation and the interaction of the pre-initiation complex (PIC) with the core 

promoter. Indeed,  chromatin occupancy of TATA-binding protein (TBP), a critical component of the 

PIC, is maximal precisely over the center of the 50bp footprint region (Supplementary Fig. 9a).  

Sequence analysis of the two conservation peaks within the 50bp footprint identified motifs for GC-

box-binding proteins such as SP1 and, less frequently, other general transcription factors (though 

with the notable absence of TATA motifs) (Supplementary Fig. 9b), suggesting that TBP (and 

potentially other PIC components) interact preferentially with general transcriptional factors 

bound to GC-box-like features in the central footprinted region.  The results are therefore 

consistent with a model in which a limited number of sequence-specific factors function both to 

prime the chromatin template for recruitment of RNA polymerase II and to guide transcriptional 

positioning.   

Differentiating DNA binding vs. indirect occupancy by TFs 

Many transcriptional regulators are posited to interact indirectly with the DNA sequence of some 

target sites though mechanisms such as tethering25.  Approaches such as ChIP-seq detect chromatin 

occupancy, but cannot by themselves distinguish sites of direct DNA binding from non-canonical 

indirect binding.  We therefore asked whether DNaseI footprint data could illuminate ChIP-seq-

derived occupancy profiles by differentiating directly bound factors from indirect binding events.  

We first partitioned ChIP-seq peaks from each of 38 ENCODE transcription factors26 mapped in 

K562 cells into three categories of predicted sites: ChIP-seq peaks containing a compatible 
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footprinted motif (directly bound sites); ChIP-seq peaks lacking a compatible motif or footprint 

(indirectly bound sites); and ChIP-seq peaks overlying a compatible motif lacking a footprint 

(indeterminate sites).  Predicted indirect sites showed significantly reduced ChIP-seq signal 

compared with predicted directly bound sites (Supplementary Fig. 10), consistent with lack of 

direct cross-linking to DNA (and therefore reduced ChIP efficiency).  Indeterminate sites exhibited 

low ChIP-seq signal and were therefore excluded from further analysis (Supplementary Fig. 10).  

The fraction of ChIP-seq peaks predicted to represent direct vs. indirect binding varied 

widely between different factors, ranging from nearly complete direct sequence-specific binding 

(e.g., CTCF), to nearly complete indirect binding (e.g., TBP; Supplementary Fig. 11).  In many cases 

factors that preferentially engage in direct DNA binding at distal sites show predominantly indirect 

occupancy in promoter regions and vice versa (Supplementary Figs. 12a,b),  

Next, we analyzed the frequency with which indirectly bound sites of one transcription 

factor coincided with directly bound sites of a second factor, suggestive of protein-protein 

interactions (e.g., tethering).  This analysis recovered many known protein-protein interactions, 

such as CTCF/YY1 and TAL1/GATA127, as well as many novel associations (Fig. 5). We observed 

enrichment for NFE2 indirect interactions at promoter bound USF2 sites, compatible with their 

known interaction28. At distal sites, we observed the opposite, with NFE2 predominantly directly 

bound accompanied by USF2 indirect peaks (Supplementary Figs. 12a,b), suggesting the 

possibility of a reciprocal or looping mechanism.  Notably, directly bound promoter-predominant 

transcription factors were enriched for co-localization with indirect peaks compared to distal 

regions (Supplementary Figs. 13a,b).  These results suggest that combining DNaseI footprinting 

with ChIP-seq has the potential to expose a previously unappreciated landscape of complex 

transcription factor occupancy modes. 

Footprints encode an expansive cis-regulatory lexicon 

Since the discovery of the first sequence-specific transcription factor29, considerable effort has been 

devoted to identifying the cognate recognition sequences of DNA-binding proteins30,31.  Despite 

these efforts, high-quality motifs are available for only a minority of the >1,400 human 

transcription factors with predicted sequence-specific DNA binding domains32.  

We reasoned that the genomic sequence compartment defined by DNaseI footprints in a 

given cell type ideally should contain much, if not all, of the factor recognition sequence information 

relevant for that cell type. Consequently, applying de novo motif discovery to the footprint 
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compartments gleaned from multiple cell types should greatly expand our current knowledge of 

biologically active TF-binding motifs.   

We performed unbiased de novo motif discovery within the footprints identified in each of 

the 41 cell types that yielded 683 unique motif models (Fig. 6a and Supplementary Methods).  We 

compared these models with the universe of experimentally-grounded motif models in the 

TRANSFAC, JASPAR, and UniPROBE33 databases. Due to the redundancy of motif models contained 

within these databases, we first collapsed all duplicate models (Supplementary Methods). 394 of 

the 683 (58%) de novo motifs matched distinct experimentally-grounded motif models, accounting 

collectively for 90% of all unique entries across the three databases (Fig. 6b and Supplementary 

Figs. 14a-c).  The wholesale de novo derivation of the vast majority of known regulatory factor 

recognition sequences from the small genomic compartment defined by DNaseI footprints 

highlights the dramatic concentration of regulatory information encoded within this sequence 

space.   

Strikingly, 289 of the footprint-derived motifs were absent from major databases (Fig. 6b 

and Supplementary Fig. 14d). These novel motifs populate millions of DNaseI footprints (Fig. 6c), 

and show features of in vivo occupancy and evolutionary constraint similar to motifs for known 

regulators, including marked anti-correlation with nucleotide-level vertebrate conservation (Figs. 

6d,3).   

To test whether novel motifs were functionally conserved in a distant mammal, we analyzed 

DNaseI cleavage patterns around human novel motifs mapped within DHSs assayed in primary 

mouse liver tissue (Figs. 6e,f and Supplementary Figs. 15a,b).  This analysis demonstrated that 

many novel motifs show nearly identical DNaseI footprint patterns in both human cells and mouse 

liver, indicating that these novel motifs correspond to evolutionarily conserved transcriptional 

regulators that are functional in both mice and men. 

Given the conservation of protein occupancy in a distant mammal, we assessed whether the 

novel motifs are under selection in human populations by analyzing nucleotide diversity across all 

motif instances found within accessible chromatin. Using high-quality genomic sequence data from 

53 unrelated individuals34 (Supplementary Table 4), we calculated the average nucleotide 

diversity35 for each individual motif space (Supplementary Fig. 15c). Reduced diversity levels are 

indicative of functional constraint, through the elimination of deleterious alleles from the 
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population by natural selection.  We found that novel motifs are collectively under strong purifying 

selection in human populations. On average, the new motifs are more constrained than most motifs 

found in the major databases (Fig. 6d and Supplementary Fig. 15c), even following exclusion of 

motifs containing highly mutable CpG dinucleotides, which underlie the marked increase in 

nucleotide diversity seen with a subset of known motifs (Supplementary Fig. 15c, right).  

Collectively, these results demonstrate that DNaseI footprints encode an expansive cis-regulatory 

lexicon encompassing both known TF recognition sequences and novel motifs that are functionally 

conserved in mouse and bear strong signatures of ongoing selection in humans.   

Novel motif occupancy parallels known regulators of pluripotency and cell fate 

 Cell-selective gene regulation is mediated by the differential occupancy of transcriptional 

regulatory factors at their cognate cis-acting elements. For example, the nerve growth factor gene 

VGF is selectively expressed only within neuronal cells (Fig. 7a), presumably due to the repressive 

action of the transcriptional regulator NRSF/REST at the VGF promoter in non-neuronal cell 

types36.  Although VGF is expressed only in neuronal cells, its promoter is DNaseI-hypersensitive in 

most cell types (not shown).  Examination of nucleotide-level cleavage patterns within the VGF 

promoter exposes its fundamental cis-regulatory logic, coordinated by the transcriptional 

regulators NRSF, SP1, USF1, and NRF1.  Whereas the NRSF motif is tightly occupied in non-neuronal 

cells, in neuronal cells, NRSF repression is relieved, and recognition sites for the positive regulators 

USF1 and SP1 become highly occupied, resulting in VGF expression. These data collectively 

illustrate the power of genomic footprinting to resolve differential occupancy of multiple regulatory 

factors in parallel at nucleotide resolution.   

We next extended this paradigm using genome-wide DNaseI footprints across 12 

functionally distinct cell types to identify both known and novel factors showing highly cell-specific 

occupancy patterns. To calculate the footprint occupancy of a motif, we enumerated for each motif 

and cell type the number of motif instances encompassed within DNaseI footprints and normalized 

this by the total number of DNaseI footprints in that cell type. Fig. 7b shows a heatmap 

representation of cell-selective occupancy at motifs for 60 known transcriptional regulators and for 

29 novel motifs.  This approach appropriately identified a number of known cell-selective 

transcriptional regulators including; (1) the pluripotency factors OCT4, SOX2, KLF4, and NANOG in 

human embryonic stem cells37; (2) the myogenic factors MEF2A and MYF6 in skeletal myocytes38; 

and (3) the erythrogenic regulators GATA1, STAT1, and STAT5A in erythroid cells39-41 (Fig. 7b). 
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 Many of the footprint-derived novel motifs displayed markedly cell-selective occupancy 

patterns highly similar with the aforementioned well-established regulators. This suggests that 

many novel motifs correspond to recognition sequences for important but uncharacterized 

regulators of fundamental biological processes.  Notably, both known and novel motifs with high 

cell-selective occupancy predominantly localized to distal regulatory regions (Fig. 7c), further 

highlighting the role of distal regulation in developmental and cell-selective processes42,43.  

Perspective 

 We describe an expansive map of regulatory factor occupancy at millions of precisely 

demarcated sequence elements across the human genome revealed by genomic DNaseI footprinting 

applied to a wide spectrum of cell types.  These elements collectively define a highly information 

rich genomic sequence compartment which encodes the recognition landscape of hundreds of DNA 

binding proteins.  This compartment has been extensively shaped by evolutionary forces to match 

closely the physical properties of its cognate interacting proteins.  Mining footprint sequences for 

recognition motifs has nearly doubled the human cis-regulatory lexicon, exposing a previously 

hidden trove of elements with evolutionary, structural, and functional profiles that parallel the 

collections of experimentally-derived genomic regulators brought to light during the past 30 years.  

Because the ability to resolve footprints is dependent on sequencing depth, and the sequencing 

level of DNaseI cleavage events in most DHSs is not saturating (even in cell types with >500 million 

mapped unique DNaseI cleavages), the present study, while extensive in many respects, represents 

only an initial foray into this biologically rich space.  Identification of the cognate DNA binding 

proteins for novel recognition sequences presents a significant challenge, though one which can be 

addressed with confidence using emerging technologies and our extensive experimental data 

demonstrating both occupancy in vivo and strong evolutionary signatures of function.  On a broader 

level, the approach we describe here can, in principle, be applied to derive the cis-regulatory lexicon 

of any organism.  We anticipate that the extensive new resources we describe, particularly in 

combination with other ENCODE data, will help to advance many aspects of human gene regulation 

research.   
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Methods Summary 

DNaseI digestion and high-throughput sequencing were performed on intact human nuclei from 

various cell types, following published methods4,44.  Briefly, roughly 10 million cells were grown in 

appropriate culture media and nuclei were extracted using NP-40 in an isotonic buffer. The NP-40 

detergent was removed and the nuclei were incubated for 3 minutes at 37°C with limiting 

concentrations of the DNA endonuclease, deoxyribonuclease I (DNaseI) (Sigma) supplemented with 

Ca2+ and Mg2+. The digestion was stopped with EDTA and the samples were treated with proteinase 

K. The small ‘double-hit’ fragments (<500 bp) were recovered by sucrose ultra-centrifugation, end-

repaired and ligated with adapters compatible with the Illumina sequencing platform. High quality 

libraries from each cell type were sequenced on the Illumina platform to an average depth of 273 

million uniquely mapping single-end tags. The sequencing tags were aligned to the human 

reference genome and per-nucleotide cleavage counts were generated by summing the 5’ ends of 

the aligned sequencing tags at each position in the genome.  FDR 1% DNaseI footprints were 

identified using an iterative search method based upon optimization of the footprint occupancy 

score.  De novo motif discovery was performed using a full enumeration algorithm. 
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Figure Legends 

 

Figure 1. Parallel profiling of genomic regulatory factor occupancy across 41 cell types. a, 

DNaseI footprinting of K562 cells identifies the individual nucleotides within the MTPN promoter 

that are bound by NRF1. b, Example locus harboring eight clearly defined DNaseI footprints in Th1 

and SK-N-SH_RA cells, with TRANSFAC database motif instances indicated below. c, Heatmaps 

showing per-nucleotide DNaseI cleavage (left) and vertebrate conservation by phyloP (right) for 

4,262 NRF1 motifs within K562 DHSs ranked by the local density of DNaseI cleavages. Green ticks 

indicate the presence of DNaseI footprints over motif instances. Blue ticks indicate the presence of 

ChIP-seq peaks over the motif instances. d, Lowess regression of NRF1, USF, NFE2, and NFYA K562 

ChIP-seq signal intensities versus DNaseI footprinting occupancy (footprint occupancy score) at 

K562 DNaseI footprints containing NRF1, USF, NFE2, and NFYA motifs. 

 

Figure 2. DNaseI footprints mark sites of in vivo protein occupancy. a, Schematic and plots 

showing the effect of T/C SNV rs4144593 on protein occupancy and chromatin accessibility. Bar 

graph y-axis is the number of DNaseI cleavage events containing either the T or C allele. Middle 

plots show T or C allele-specific DNaseI cleavage profiles from 10 cell lines heterozygous for the 

T/C alleles at rs4144593. Right plots show DNaseI cleavage profiles from 18 cell lines homozygous 

for the C allele at rs4144593 and 1 cell line homozygous for the T allele at rs4144593. Cleavage 

plots are cut off at 60% cleavage height.  b, The average CpG methylation within IMR90 DNaseI 

footprints, IMR90 DHSs (but not in footprints) and non-hypersensitive genomic regions in IMR90 

cells. CpG methylation is significantly depleted in DNaseI footprints (P < 2.2x10-16, Mann-Whitney 

test). 

 

Figure 3. Footprint structure parallels TF structure and is imprinted on the human genome. 

a, The co-crystal structure of Upstream Stimulatory Factor (USF) bound to its DNA ligand is 

juxtaposed above the average nucleotide-level DNaseI cleavage pattern (blue) at motif instances of 

USF in DNaseI footprints. Nucleotides that are sensitive to cleavage by DNaseI are colored as blue 

on the co-crystal structure. The motif logo generated from USF DNaseI footprints is displayed below 
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the DNaseI cleavage pattern. Below is a randomly ordered heatmap showing the per-nucleotide 

DNaseI cleavage for each motif instance of USF in DNaseI footprints. b, The per-base DNaseI 

hypersensitivity (blue) and vertebrate phylogenetic conservation (red) for all DNaseI footprints in 

dermal fibroblasts matching three well annotated transcription factor motifs. The white box 

indicates width of consensus motif. The number of motif occurrences within DNaseI footprints in 

indicated below each graph. 

 

Figure 4. A highly stereotyped chromatin structural motif marks sites of transcription 

initiation in human promoters. a, A 35-55 base-pair footprint is the predominant feature of many 

promoter DHSs and is in tight spatial coordination with the transcription start site. b, Heatmap of 

the per-nucleotide DNaseI cleavage pattern at 5,041 instances of this stereotypical footprint in 

K562 cells.  c, Aggregate per-base DNaseI  cleavage profile (blue line) and mean per-nucleotide 

conservation score (phyloP) surrounding instances of this stereotypical  footprint in K562 cells (red 

dashed line). d, Aggregate strand corrected CAGE sequencing data (green line) and the average 

nearest 5’ end of a spliced EST (orange line) surrounding instances of this stereotypical  footprint in 

K562 cells.  

 

Figure 5. Distinguishing direct and indirect binding of transcription factors. Heatmap of the 

enrichment of pairs of transcription factors in a direct-indirect association. Direct peaks are defined 

by ChIP occupancy accompanied by a footprint overlapping a compatible motif. Indirect peaks do 

not have a compatible motif. The color of each cell is determined by the fraction of indirect peaks 

that co-localize with the direct peaks of another factor. 

 

Figure 6. De novo motif discovery expands the human regulatory lexicon. a, Overview of de 

novo motif discovery using DNaseI footprints. b, Annotation of the 683 de novo-derived motif 

models using previously identified transcription factor motifs. 394 of these de novo-derived motifs 

match a motif annotated within the TRANSFAC, JASPAR or UniPROBE databases, whereas 289 are 

novel motifs (pie chart). The de novo consensus matching TRANSFAC, JASPAR or UniPROBE 

sequences cover the majority of each database (bar chart) c, Example of a DNaseI footprint found in 
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multiple cell types that is annotated solely by one of the novel de novo-derived motifs. d, Box-and-

whisker plot comparing the average nucleotide diversity at instances of the 289 novel de novo-

derived motif models to instances of motifs present in databases of known specificities (x-axis). The 

blue bar indicates the average nucleotide diversity (π) at 4-fold degenerate coding sites (width is 

equal to 95% confidence interval); gold bar indicates π at all coding sites (width is equal to 95% 

confidence interval). e, Phylogenetic conservation (red dashed) and per-base DNaseI 

hypersensitivity (blue) for all DNaseI footprints in dermal fibroblast cells matching two novel de 

novo-derived motifs. The white box indicates width of consensus motif. f,  Per-nucleotide mouse 

liver DNaseI cleavage patterns at occurrences of the motifs in (e) at DNaseI footprints identified in 

mouse liver.  

 

Figure 7. Multi-lineage DNaseI footprinting reveals cell-selective gene regulators. a, 

Comparative footprinting of the nerve growth factor gene (VGF) promoter in multiple cell types 

reveals both conserved (NRF1, USF and SP1) and cell-selective (NRSF) DNaseI footprints. b, Shown 

is a heatmap of footprint occupancy computed across 12 cell types (columns) for 89 motifs (rows), 

including well-characterized cell/tissue-selective regulators, and novel de novo-derived motifs (red 

text). The motif models for some of these novel de novo-derived motifs are indicated next to the 

heatmap. c, The proportion of motif instances in DNaseI footprints within distal regulatory regions 

for known (black) and novel (red)  cell-type specific regulators in (b) is indicated. Also noted are 

these values for a small set of known promoter-proximal regulators (green). 
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Supplementary Methods 

Section Title Main Text Figure(s) Supp. Figure(s) 

0.1 Data downloads - - 

0.2 Cell types used for digital genomic footprinting - - 

1.1 Identification of DNaseI footprints 1a,b - 

1.2 Footprinting vs. tag levels - 1a,b 

1.3 FDR 1% DNaseI hypersensitive sites - 1c,d 

1.4 Annotation of footprints - 2a,b 

1.5 Putative motif binding sites and footprints - 3 

1.6 DNaseI cleavages vs. ChIP-seq 1c 4a,b 

1.7 Footprint strength vs. ChIP-seq signal intensity 1d - 

1.8 Footprint strength vs. evolutionary conservation - 4c,d 

2.1 DNA Interacting Protein Precipitation (DIPP) 
experiments  

- 5a-e 

2.2 Allelic imbalance in footprints 2a 6 

2.3 CpG methylation calculation within footprints, 
DHSs and non-DHSs 

2b - 

3.1 Rendering of crystallography data showing DNA-
protein complexes 

3a - 

3.2 Visualization of DNaseI cleavage profiles by motif  3b 7;8 
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4.1  Analysis of stereotyped TSS-linked footprint 4 - 

4.2 Determining direct and indirect transcription 
factor binding 

5 9;10;11;12;13 

5.1 De novo motif discovery 6a  

5.2 Motif matching 6b-c 14 

5.3 Mouse scans of novel human motifs 6f 15b 

5.4 Nucleotide diversity in DNaseI footprints 6d 15c 

6.1 Cell type predominance - motifs within footprints 7a,b - 

6.2 Proximal vs. distal regulators 7c - 

 

0.1 – Data downloads 

DNaseI-seq production data for Digital Genomic Footprinting (DGF) are available through the NCBI’s 

Gene Expression Omnibus (GEO) data repository (accessions GSE26328 and GSE18927), and also 

through the table browser from University of California at Santa Cruz45 (see 

 http://genome.ucsc.edu/cgi-bin/hgTrackUi?db=hg19&g=wgEncodeUwDgf). 

Supplementary data too large to include in this supplement are being made available via the ftp server 

at ebi.ac.uk which contains an organized file structure with the ENCODE data.  Analysis datasets are 

located at: 

ftp://ftp-private.ebi.ac.uk/ (Login:encode-box-01 Password: enc*deDOWN)  

in the subdirectories of byDataType. 

 

0.2 – Cell types used for digital genomic footprinting 

http://genome.ucsc.edu/cgi-bin/hgTrackUi?db=hg19&g=wgEncodeUwDgf
https://mail.stamlab.org/exchweb/bin/redir.asp?URL=http://ebi.ac.uk
ftp://ftp-private.ebi.ac.uk/
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The following human cell types were subjected to DNaseI digestion and high-throughput sequencing, 

following previous methods4,46  at the 36mer or 27mer* level: AG10803, AoAF, CD20+, CD34+ Mobilized, 

fBrain, fHeart, fLung, GM06990*, GM12865, HAEpiC, HA-h, HCF, HCM, HCPEpiC, HEEpiC, HepG2*, H7-

hESC, HFF, HIPEpiC, HMF, HMVEC-dBl-Ad, HMVEC-dBl-Neo, HMVEC-dLy-Neo, HMVEC-LLy, HPAF, HPdLF, 

HPF, HRCEpiC, HSMM, Th1*, HVMF, IMR90, K562*, NB4, NH-A, NHDF-Ad, NHDF-neo, NHLF, SAEC, SKMC, 

and SK-N-SH RA*. 

Tags were aligned to the reference genome, build GRCh37/hg19  (specified by ENCODE 

http://hgdownload-test.cse.ucsc.edu/goldenPath/hg19/encodeDCC/referenceSequences/) using 

Bowtie47, version 0.12.7 with parameters: --mm -n 3 -v 3 -k 2, and --phred33-quals for Illumina HiSeq 

sequencer runs or --phred64-quals for Illumina GAII sequencer runs. 

 

1.1 – Identification of DNaseI footprints 

For each cell type, we computed the DNaseI cleavage per nucleotide by assigning to each base of the 

human genome an integer score equal to the number of uniquely mappable sequence tags with 5' ends 

mapping to that position. To identify DNaseI footprints comprehensively across the genome, we used an 

improved and conceptually simplified approach versus that applied previously to the yeast genome4. We 

focused on high cleavage density regions, hotspot regions as identified by the hotspot algorithm46, 

within each cell type. We scanned the genome for 6-40 nt stretches of successive nucleotides with low 

DNaseI cleavage rates relative to the immediately flanking regions, the signature of localized protection 

from DNaseI cleavage1,4. We then filtered findings to those occurring within the hotspot regions. 

A priori, footprints comprise three components: a central area of direct factor engagement, and an 

immediately flanking component to each side. Upon factor engagement, local DNA architecture is 

distorted, frequently resulting in enhanced cleavage rates for flanking nucleotides outside of the factor 

recognition sequence. Greater disparity between the central and flanking components is indicative of 

higher factor occupancy. 

To quantify this, we applied a simple footprint occupancy score (FOS) such that 

FOS = (C+1)/L + (C+1)/R 

http://hgdownload-test.cse.ucsc.edu/goldenPath/hg19/encodeDCC/referenceSequences/
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Where C represented the average number of tags in the central component, L represented the average 

number of tags in the left flanking component, R represented the average number of tags in the right 

flanking component, and a smaller FOS value indicated greater average contrast levels between the 

central component and its flanking regions. 

We sought to optimize the statistic across a range of central component (6-40 nt) and flanking 

component (3-10 nt) sizes. The output of the algorithm was the set of footprints with optimal FOS 

scores, subject to the criteria that L and R were greater than C, and all central components were disjoint 

and non-adjoining. When two or more potential footprints (those with L and R greater than C) had 

overlapping or abutting central components, we selected the one with the lowest FOS (or, in rare cases 

of identical scores, the 5’-most footprint relative to the forward strand). We then rescanned the entire 

local region to identify additional footprints. A local region was defined as the smallest genomic 

segment to contain all potential footprints of shared bases (by transitivity). No newly identified footprint 

consisted of a central component that overlapped or abutted the central component of any previously 

selected footprint. The rescan process was iterated until no new footprint was identified within the local 

region. 

Human genomic positions uniquely mappable using 36 nt (and 27 nt as appropriate) sequence reads 

were computed using the same algorithm previously applied to yeast4.  Any computed footprint whose 

central component consisted of non-uniquely mappable bases (thus having no mapped cleavage events 

by definition) that covered at least 20% of its length was discarded. Typically, fewer than 1% of 

unthresholded footprints were discarded during this process. 

False discovery rate threshold  

Due to the large number of tests for footprints performed over the genome, it was necessary to control 

for the expected number of false positives that arose due to chance through multiple testing48. We 

applied a false discovery rate (FDR) measure, defined as the expected value of the fraction of truly null 

features called significant divided by the total number of features called significant. To estimate FDR, we 

first generated a null set of pseudo-cleavages. For each hotspot in one cell type, we randomly reassigned 

the same number of tags found within the region to uniquely mappable positions within the same 

genomic interval. Analogous with experimental data, each base received an in silico cleavage score equal 

to the number of tags with 5' ends mapped to that base. We then considered the identical footprint 
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positions under the randomized scenario that were derived as output for the non-thresholded 

experimental data, thus encompassing the same number of footprint calls for FDR calculation purposes. 

We computed the maximum FOS threshold at which the number of footprints in the null set divided by 

the number of footprints in the observed set was less than or equal to 1%. The 1% FDR estimates were 

computed separately for all 41 cell types, covering a wide range of total tag levels and number of 

hotspot regions, to produce an average FOS threshold of 0.95 with a standard deviation of 0.02.  We 

applied a final FOS threshold of 0.95 to footprints across all cell types.  The central components of these 

FDR thresholded footprints, henceforth footprints, made up the final output of the procedure. 

We tested whether DNaseI sequence bias contributed significantly to our FDR thresholded footprint 

sets.  We digested purified genomic DNA with DNaseI enzyme, and sequenced resulting DNaseI cleaved 

fragments of size 1 kbp or below.  The data were used to build a model that describes relative cut rate 

biases among all 6-mer subsequences (H. Bussemaker, personal communication).  We visited each FDR 

thresholded footprint in the SKMC cell type and counted the total number of mapped tags falling in its 

central, left, and right flanking regions.  We then randomly assigned the same number of simulated tags 

to positions within these regions, using probabilities proportional to the model’s DNaseI cut-rate bias for 

the sequence context surrounding each position.  A new FOS was calculated over the same L, C, and R 

regions as before and compared to the FOS value of the original footprint to see which footprints could 

be explained by sequence bias alone. 

Combining Footprints Across Cell Types 

We computed the multiset union of all footprints across all cell types. For each element of the union, we 

collected all significantly overlapping footprints, which were defined as those footprints with 65% or 

more of their bases in common with the element. A footprint's genomic coordinates were redefined to 

the minimum and maximum coordinates from its overlap set, which always included the footprint 

itself49.  All redefined footprints from the union then passed through a subsumption and uniqueness 

filter: when a footprint was genomically contained within another, the filter discarded the smaller of the 

two or selected just one footprint if identical.  Footprints passing through the filter comprised the final 

set of 8.4 million combined footprints across all cell types.  Unlike footprints from any single cell type, 

the combined set included overlapping footprints.  

1.2 – Footprinting vs. tag levels 
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Random subsamples (sampling without replacement) of the 543 million uniquely mappable DNaseI-seq 

tags from SKMC were generated.  Increasing sample sizes utilized tags generated from smaller samples 

in addition to new tags generated from the randomized process.  Footprints were called at each 

subsampled tag level. 

1.3 – FDR 1% DNaseI hypersensitive Sites 

We counted the number of footprints falling within every DNaseI hypersensitive sites (DHS, defined as 

150 nt in length)46 and grouped peaks by their number of footprints.  Any peak containing more than 10 

footprints was grouped with peaks containing exactly 10 footprints. The analysis was performed in every 

cell type separately, and then results were combined.  We also decile-partitioned the DHSs by the 

number of sequencing tags mapped to them.  For each partition, we drew a box plot to indicate the 

distribution of the number of footprints falling within the DHSs. We also determined the average 

number of footprints falling in DHSs (Supplementary Table 2). 

1.4 – Annotation of footprints 

We counted and summarized the number of combined footprints (8.4 million) falling into common 

genomic element categories (defined by at least 1 nt of overlap), such as those overlapping introns, 

coding elements, and intergenic regions.  We utilized annotations from Gencode, version 7.  Promoter 

regions were defined as within +/- 2.5 kb from a transcriptional start site (TSS).  Regions within +/- 2.5 kb 

of transcriptional end sites were categorized as 3’-proximal.  Other feature categories, such as Coding, 

5’-UTR, 3’-UTR, and Introns were derived directly from Gencode annotations using transcriptional and 

coding start and stop site information, as well as exon boundary coordinates.  When a footprint satisfied 

more than one category’s condition (for example, when a footprint was found near more than one 

annotated transcript), we assigned it to only a single category.  The order of category assignment in such 

cases was: coding, 5’-UTR, 3’-UTR, promoter, 3’-proximal, intronic, and intergenic. 

1.5 – Putative motif binding sites and footprints 

Genome Structure Correction 

We determined the significance of overlap between footprints and predicted motifs within hotspot 

regions utilizing the Genome Structure Correction (GSC) test50.  Merged genomic hotspot regions across 

all 41 cell types made up the domain.  The multiset union of all footprints, part of the domain by 
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definition, as well as motif predictions within the domain (FIMO51; P < 1x10-5 using TRANSFAC10 and 

JASPAR Core11, separately) were used as inputs to GSC.  Program parameters were: -n 10000, -s 0.1, -r 

0.1, and -t m.  Significance was reported as a Z-score (empirical p-value was 0). 

Average Motif Density Per-nucleotide 

We determined the average per-nucleotide number of overlapping motif instances over segments of a 

genome-wide partition.  We separately merged the hotspot regions and footprint regions across the 41 

cell types.  Using genome-wide FIMO scan predictions over TRANSFAC (P < 1e-5), we counted the 

number of motif scan bases contained within the merged footprint partition and divided by the total 

number of bases within the partition.  Similarly, we found the average over the genomic complement 

between merged hotspots and merged footprints.  Finally, we found a genome-wide average outside of 

hotspots and divided by the number of nucleotides with known base labels (A,C,G,T), thereby ignoring 

large centromeric and telemeric regions. 

1.6 – DNaseI cleavages vs. ChIP-seq 

Motif models (from TRANSFAC, version 2011.1, JASPAR Core, and UniPROBE33) were used in conjunction 

with the FIMO motif scanning software, version 4.6.1 using a P < 1e-5 threshold, to find all motif 

instances within DNaseI hotspots of the K562 cell line.   We buffered (+/- 35 nt) a discovered motif 

instance and counted at each base position the number of uniquely mapping DNaseI sequencing tags 

with 5’ ends mapping to the position. We sorted buffered motif instances by their total counts, and then 

normalized each instance’s counts to a mean value of 0 and variance 1.  A heatmap, with 1 row per 

motif instance, was generated using matrix2png59, version 1.2.1.  A phyloP evolutionary conservation19 

score heatmap over the same ordered motif instances and bases was generated using the same 

processing techniques.  Motif instances that overlapped footprints by at least 3 nt were annotated. 

 Uniformly processed hg19 K562 ChIP-seq peaks generated from experiments as part of the ENCODE 

Consortium were downloaded from the UCSC Table Browser53.  Motif instances overlapping ChIP-seq 

peaks by at least 1 nt were also annotated. 

1.7 – Footprint strength vs. ChIP-seq signal intensity 

For a given ChIP-seq factor, we collected footprints that overlapped putative binding sites within 

hotspot regions by at least 3 nt.  We calculated the summed ChIP-seq signal density over each region, 
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after buffering by +/- 50 nt from footprint centroid.  Footprints were ordered by their FOS values, and 

signal data were plotted using lowess curve fitting with a span of 25%.  ChIP-seq data (raw tag counts) 

included those from first replicates only.  Average tag count numbers replaced cases where multiple 

measurements over the same genomic coordinates existed in the ChIP-seq data. 

1.8 – Footprint strength vs. evolutionary conservation 

We additionally calculated the maximum phyloP evolutionary conservation score over the same set of 

footprints.  The maximum score was derived over the core footprint region (no buffering), with ten 

percent of outlying scores removed.  As before, footprints were ordered by their FOS values, and signal 

data were plotted using loess curve fitting with a span of 25%. We applied a linear regression model 

with R statistical software (http://www.r-project.org) collecting the associated F-test’s p-value.  

2.1 – DNA Interacting Protein Precipitation (DIPP) experiments 

Protein extraction for DNA Interacting Protein Precipitation (DIPP) 

Nuclei were isolated using a standard protocol previously described8. Briefly, K562 cells were grown in 

RPMI (GIBCO) supplemented with 10% Fetal Bovine Serum (PAA), sodium pyruvate (GIBCO), L-glutamine 

(GIBCO), penicillin and streptomycin (GIBCO), and washed once with 1xDPBS (GIBCO). Nuclear extraction 

was performed by resuspending cells at 2.5x106 cells/mL in 0.05% NP-40 (Roche) in Buffer A (15mM Tris 

pH 8.0, 15mM NaCl, 60mM KCl, 1mM EDTA pH 8.0, 0.5mM EGTA pH 8.0, 0.5mM Spermidine). After an 8 

minute incubation on ice, nuclei were pelleted at 400 rcf for 7 minutes and washed once with Buffer A. 

Nuclei were then transferred to a 37°C water bath and resuspended at 1.25x107 nuclei/mL in Extraction 

Buffer (10mM Tris pH 8.0, 600mM NaCl, 1.5mM EDTA pH 8.0, 0.5mM Spermidine). After 3 minutes at 

37°C the sample was transferred to ice and rocked at 4°C for 2 hours. The soluble and insoluble fractions 

were separated by centrifugation at 3,220g for 15 minutes. The soluble fraction was then dialyzed for 2 

hours at 4°C using a 3,500 Da molecular weight cut off (MWCO) cartridge (Pierce) against 500mL Dialysis 

Buffer (15mM Tris pH 7.5, 15mM NaCl, 60mM KCl, 5µM ZnCl2, 6mM MgCl2, 1 mM DTT, 0.5mM 

Spermidine, 40% Glycerol). The dialysis buffer was refreshed after 1 hour of dialysis. Dialyzed protein 

samples were quantified using a BCA assay (Pierce), flash frozen using liquid nitrogen and stored at -

80°C until use.  

DNA probe construction for DNA Interacting Protein Precipitation (DIPP) 
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Three genomic loci were targeted that demonstrated varying footprinting strengths. These footprints 

included (in hg19 coordinates) a MAX footprint (chr22:39707228-39707245) and two AP1 footprints – 

AP1 site 1 footprint (chr11:5301978-5302005) and AP1 site 2 footprint (chr5:75668604-75668626). For 

each of these sites, a 70-85 base pair region of DNA centered on the DNaseI footprint was selected. The 

selected DNA regions, in hg19 coordinates, were; chr22:39707201-39707270 for the MAX site; 

chr11:5301945-5302029 for the AP1 site 1; and chr5:75668577-75668646 for the AP1 site 2. DNA oligos 

were ordered for the forward and reverse strand for each of these sites, with the forward strand oligo 

containing a 5’ biotin modification (Integrated DNA Technologies). For each of these sites, we also 

shuffled the footprinting sequence and ordered DNA oligos that contained this shuffled footprinting 

sequence along with the same flanking sequence as for the oligos above (Integrated DNA Technologies). 

The sequences of each of the probes can be found in Supplementary Table 3. 

Generation of dsDNA bound beads for DNA Interacting Protein Precipitation (DIPP) 

For each probe set, 500 picomoles of the forward strand biotinylated DNA oligo was mixed with 1 

nanomoles of the reverse strand DNA oligo in Annealing Buffer (20mM Tris pH 8.0, 100mM KCl, 10mM 

MgCl2). The reaction was denatured at 90°C for 5 minutes, slowly cooled to 65°C over 10 minutes, held 

at 65°C for 5 minutes and then cooled to 25°C. For each reaction, 100µl of Dynabeads MyOne 

Streptavidin T1 beads (Invitrogen) were washed twice with 0.75 mL of Bead Buffer (20mM Tris pH 8.0, 

2M NaCl, 0.5mM EDTA, 0.03% NP-40) and resuspended in 0.8mL Bead Buffer similar to how previously 

described54. Annealed dsDNA probes were then added to the beads and rocked at room temperature for 

1 hour. Beads were then washed twice with 0.8mL Bead Buffer to remove unbound oligos.  1 mL of 

Blocking Buffer (20mM Hepes pH 7.9, 300mM KCl, 50µg/mL bovine serum albumin (BSA), 50µg/mL 

glycogen, 5mg/mL polyvinylpyrrolidone (PVP), 2.5mM DTT, 0.02% NP-40) was added to each bead 

reaction and incubated at room temperature for 2 hours. Beads were then washed twice with 0.75mL of 

Binding Buffer (20mM Tris-HCl pH 7.3, 5µM ZnCl2, 100mM KCl, 0.2 mM EDTA pH 8.0, 10mM potassium 

glutamate, 2mM DTT, 0.04% NP-40, 10% glycerol). 

Pre-clearing protein extract for DNA Interacting Protein Precipitation (DIPP) 

60µl of fresh Dynabeads MyOne Streptavidin T1 beads (Invitrogen) were washed twice with 0.3 mL of 

Bead Buffer and once with 0.3 mL of Binding Buffer and then added to 80µg of 600mM soluble K562 

nuclear protein extract and 80µg of poly [d(I-C)] (Roche) in a 400µl total reaction volume with Binding 
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Buffer. This reaction was incubated at 4°C for 1.5 hours, the beads were removed and the buffered 

protein extract was cleared by centrifugation at 10,000 g for 8 minutes at 4°C. 

DNA Interacting Protein Precipitation (DIPP) reaction and digestion 

To each of the washed dsDNA bound bead reactions, 200µl of the pre-cleared buffered protein extract 

was added.  This was incubated at 4°C for 2 hours then washed 3 times with 1 mL Binding Buffer, twice 

with 0.5 mL 50mM Ammonium Bicarbonate pH 7.8 and resuspended in 100µl 0.1% PPS Silent Surfactant 

(Protein Discovery) in 50mM Ammonium Bicarbonate pH 7.8. Bead bound proteins were boiled at 95°C 

for 5 minutes, reduced with 5 mM DTT at 60°C for 30 minutes and alkylated with 15 mM iodoacetic acid 

(IAA) at 25°C for 30 minutes in the dark. Proteins were then digested with 2µg Trypsin (Promega) at 37°C 

for 1.5 hours while shaking. The supernatant, which now contains digested peptides, was then 

transferred to a new tube, the pH was adjusted to <3.0 by 5 µl of 5 M HCl and incubated at 25°C for 20 

minutes and then cleared by centrifugation at 20,817g for 10 minutes. The digested samples were 

desalted using an Oasis MCX cartridge 30 mg/60 µm (Waters) as previously described55. Peptide samples 

were then resuspended in 30µl 0.1% formic acid in H2O. These peptide samples were stored at -20°C 

until injected on the mass spectrometer. 

Targeted Proteomic Mass Spectrometry on DIPP samples 

Proteotypic peptides for c-Jun, MAX and CTCF were identified as previously described55. These peptides 

were; CPDCDMAFVTSGELVR and TFQCELCSYTCPR for CTCF; NSDLLTSPDVGLLK and NVTDEQEGFAEGFVR 

for c-Jun; and QNALLEQQVR and ATEYIQYMR for MAX. For each doubly charged monoisotopic precursor, 

we monitored singly charged monoisotopic y3 to yn-1 product ions. All cysteines were monitored as 

carbamidomethyl cysteines. Ions were isolated in both Q1 and Q3 using 0.7 FWHM resolution. Peptide 

fragmentation was performed at 1.5mTorr in Q2 using calculated peptide specific collision energies56. 

Data was acquired using a scan width of 0.002 m/z and a dwell time of 40ms. 

Peptide samples were analyzed with a TSQ-Vantage triple-quadrupole instrument (Thermo) using a 

nanoACQUITY UPLC (Waters). A 5µl aliquot of each sample was separated on a 20cm long 75µm I.D. 

packed column (Polymicro Technologies) using Jupiter 4u Proteo 90A reverse-phase beads 

(Phenomenex) and chromatography conditions as previously described54. The injection order for each 

sample was randomized, and each sample was measured in three separate replicate injections. 
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Targeted measurements were imported into Skyline for analysis57. Chromatographic peak intensities 

from all monitored product ions of a given peptide were integrated and summed to give a final peptide 

peak height. For each peptide, peak heights from different samples and replicate runs were normalized 

such that the injection with the highest intensity was given a value of 1. Final peptide data were 

generated by taking the average normalized value of a peptide across replicates of a sample.  

2.2 – Allelic imbalance in footprints 

Read counts and genotype calls 

A set of known autosomal single nucleotide variants (SNVs) was downloaded from the 1000 Genomes 

Project14. To avoid positions subject to mapping bias, SNVs were filtered to exclude any two within a 

read length (up to 36 nt) of one another. Allele counts used the same DNaseI-seq alignments from which 

the cut-counts were derived. For each cell type, reads overlapping each SNV were queried from the 

alignment in BAM format using the SAMtools58. Reads supporting a base call were counted only if they 

were mapped with no more than one mismatch excluding the SNV position being counted. If more than 

one read from a library was mapped at the same chromosome offset and strand, a single read was 

sampled at random to avoid overcounting from possible PCR duplicates. In order to call an individual 

heterozygous at a SNV conservatively, both alleles observed by 1000 Genomes had to be supported by 

at least four distinct reads. To call homozygotes conservatively, one of the known alleles had to be 

supported by at least 10 reads, and there had to be no reads supporting the other known allele, but a 

single read supporting another base was tolerated as a sequencing error where total read depth 

exceeded 50. 

Allele-specific cut-count profiles 

In the vicinity of each SNV (36 nt), DNaseI cut-counts from individuals homozygous for the same allele 

were added together, using the same genomic cut-count tracks used for calling footprints. In 

heterozygous individuals, reads overlapping the SNV were queried from the alignment BAM files but not 

subjected to the mismatch and duplicate filters used to obtain unbiased counts. The cut position 

represented by each read was reported as the aligned genomic position of the first base of the read, so 

cut-counts from reads aligning to the negative genomic strand may be offset by 1 nt, relative to the 

convention normally used for genomic cut counts.  For each allele, the phased cut-counts for that allele 

from all heterozygous individuals were then added together. 
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Test for difference in the prevalence of allelic imbalance 

At each SNV, the reads supporting each allele from all individuals heterozygous at the SNV were added 

together. Heterozygous sites were divided into two sets, those within the merged FDR 1% footprints 

across all cell types and those outside. A read-depth distribution was derived from each set, and the 

intersection was determined to generate a read-depth-matched random sample as large as possible.   At 

each particular read depth, all sites from the set with fewer instances of that depth were included, and a 

random sample without replacement was taken from the set with more instances. Finally, we counted 

sites in each set showing allelic imbalance with two-sided binomial test P < 0.01. The difference between 

these counts was tested for significance with a one-sided Fisher’s exact test. 

2.3 – CpG methylation calculation within footprints, DHSs, and non-DHSs 

IMR90 methylation calls16 were filtered to CpGs covered by at least 40 reads. Methylation at each CpG is 

defined as the count of reads showing methylation (protection from bisulfite conversion) divided by the 

total read depth. We generated three sets of genomic coordinates with this signal: IMR90 FDR 1% 

footprints, IMR90 DNaseI peaks (subtracting overlapping footprint bases), and locations of CpGs in the 

GRCh37/hg19 genome reference sequence, removing elements that overlap IMR90 DNaseI hotspots. 

For each contiguous region in these datasets, we took the mean methylation of all overlapping CpGs 

that passed the 40-read coverage threshold.  Regions with no such overlap were ignored.  To compute 

p-values, vectors of mean methylation values were compared using a two-sided Mann-Whitney test. 

3.1 – Rendering of DNA-protein complexes 

Crystallography data showing DNA-protein complexes for selected factors17,18 were obtained from the 

Protein Data Bank and rendered with MacPyMOL (http://www.pymol.org), version 1.3. Nucleotide 

residues were colored from white to blue, indicating increasing relative DNaseI cleavage propensity as 

aggregated across all motif instances. 

Heatmap of DNaseI cleavages per-nucleotide 

We buffered (+/- 35 nt) every motif instance of a motif model found within hotspot regions, and 

counted the number of uniquely mappable sequencing tags with 5’ ends mapping at each base position. 

We sorted motif instances by their total counts, and then normalized each instance’s counts to a mean 

value of 0 and variance 1.  A heatmap, with 1 row per motif instance, was generated using matrix2png59. 
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3.2 – Visualization of DNaseI cleavage profiles by motif occurrence 

Motif models (from TRANSFAC, JASPAR Core, and UniPROBE) were used in conjunction with the FIMO 

motif scanning software, version 4.6.1 using a P < 1e-5 threshold, to find all motif instances within 

DNaseI hotspots of each cell type. The left and right coordinates of each motif instance were padded by 

35 nt. Using the bedmap tool from the BEDOPS suite49, version 1.2, the per-nucleotide DNaseI cleavage 

values from deeply sequenced DNaseI-seq libraries were recovered for each motif occurrence.  A similar 

approach was used for phyloP vertebrate conservation. Aggregate plots were made by averaging over all 

strand-oriented motif occurrences the number of DNaseI cleavages and per-base conservation scores. 

All palindromic and near-palindromic motif occurrences were left in the dataset, reasoning that a 

transcription factor may bind to either orientation of the genomic region and binding events on either 

strand result in conformal changes to DNA that result in strand-specific cleavage patterns. Sequence 

logos were generated by assessing the information content of the oriented genomic sequences from all 

motif occurrences60. 

4.1 – Analysis of stereotyped TSS-linked footprint 

The cleavage profiles +/-500 nt of all GENCODE V7 (level 1 and 2; manual curation) transcription start 

sites were used as regions to search for a 35-55 base-pair footprint following the method outline above 

with modifications. To amplify the signal in regions of low tag density and to remove noise in the data, 

the DNase I cutcounts were squared (x2). The FOS score was then calculated for every segment 35-55 

base-pairs in width using a fixed flank width of 10 base-pairs (left and right). The scored segments were 

ranked in ascending order (low FOS to high FOS) and the top non-overlapping segments were collected 

until no segments remained. Finally, a FOS threshold was selected (0.75, uniformly across 41 cell types) 

and these putative footprints were used in the subsequent analysis. 

Graphical profiles were generated by enumerating the per-nucleotide DNaseI cleavages and phyloP 

conservation in a 250 base-pair window centered on the footprint. The heatmap representation was 

created using matrix2png. 

Analysis of transcription initation. CAGE tags from the nuclear poly-A fraction (replicate 1) generated by 

RIKEN was downloaded from the UCSC Browser and the 5’ stranded oriented ends were summed per-

base. The footprint was stranded oriented to the nearest GENCODE V7 TSS. We enumerated the per-

base CAGE tags in an 800 base-pair window centered on the footprint. To evaluate the spatial 
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relationship of transcription we calculated the distance to the nearest spliced EST curated from 

GenBank61. 

4.2 – Determining direct and indirect transcription factor binding 

Uniformly processed hg19 K562 ChIP-seq peaks generated from experiments as part of the ENCODE 

Consortium were downloaded from the UCSC Genome Browser. Peaks overlapping DNaseI 

hypersensitive hotspot regions46 by at least 20% were stratified into three categories: direct peaks, 

indirect peaks and indeterminate peaks. Direct peaks contained an appropriate motif instance (FIMO 

scan software, version 4.6.1, using P < 1e-5 threshold and motifs from TRANSFAC, version 2011.1) that 

overlapped a DNaseI footprint by at least 1 nt. Indirect peaks did not contain a cognate motif and 

indeterminate peaks were ambiguous (contained a motif which did not overlap a footprint). To identify 

enriched direct/indirect binding pairs, we counted the number of overlapping occurrences of all possible 

direct/indirect combinations.  We normalized each ChIP-seq peak-pair count by the total number of 

indirect peaks for the indirectly bound factor, in order to reduce the effect of noise (due to incomplete 

motif models, insufficient DNaseI coverage, and/or non-specific antibodies).  

5.1 – De novo motif discovery 

We created different footprint subsets for each cell type for the purpose of de novo motif discovery.  A 

proximal subset was defined as all footprints within 2000 nt of the canonical transcriptional start site of 

genes61, a non-proximal set was defined as all footprints not in the proximal subset, a distal set was 

defined as all footprints more than 10,000 nt from any transcriptional start site, and cell-type-specific 

footprints were those footprints found within cell-type-specific DHSs.  Cell-type-specific DHSs and 

constituent footprints were those found in only a single cell type. 

We developed an exhaustive motif discovery procedure for inputs consisting of millions of genomic 

regions. To accomplish the exhaustive search, several simple heuristic filtering and clustering techniques 

were employed, along with a compute cluster.  De novo motif discovery was performed separately for 

every cell type and on every footprint subset. For each subset, we symmetrically padded the central 

components of footprints by 4 nt and extracted genomic sequence information to create target regions 

for de novo discovery. We counted the number of target regions within which each subsequence pattern 

occurred, separately considering every 8 nt permutation over the 4-letter DNA nucleotide alphabet, with 

up to 8 intervening IUPAC ‘N’ degenerate symbols. For background estimates, nucleotide labels within 
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every target region were randomly shuffled, thereby maintaining local nucleotide label compositions. 

The number of regions within which each pattern existed was determined after each of 1000 shuffling 

operations in order to establish sample mean and variance values for expectation. These estimates for 

patterns further served as conservative estimates for longer patterns in the background case. For 

example, the estimates for 'acgttacc' also served as estimates for the 'acgNttacc' pattern. A Z-score was 

computed for each observed subsequence pattern by subtracting the mean background frequency 

estimate from the observed frequency and then dividing by the estimated standard deviation. Patterns 

with Z-score of at least 14 were listed in descending Z-score order and then further filtered and 

clustered to remove redundant motifs. Initially, the highest Z-score pattern was added to an output list, 

and each subsequent pattern was compared to every entry in the list. If a similar entry was found, the 

pattern was discarded; otherwise, the pattern was added to the bottom of the output list. Pattern 

similarities were determined by sequentially comparing characters. When two patterns were the same 

length and their ‘N’ placeholders aligned, they were considered similar if they had one character 

difference; otherwise, they were declared similar if they had up to two character differences.  The 

reverse character sequence of every pattern then underwent the same filtering. The re-tuned motif list 

underwent a similar second stage filter that included all alignment possibilities and reverse complement 

combinations. Sequence patterns were converted to positional weight matrices (PWMs) by scanning all 

target sequences and normalizing over the nucleotide alphabet. Only exact matches to a subsequence 

pattern, ignoring all ‘N’ placeholders, were considered during PWM construction, which underwent 

further filtering.  The PWM corresponding to the highest Z-score pattern was added to an output list and 

a comparison list. PWMs for subsequent patterns, still in descending Z-score order, were compared to 

every entry in the comparison list and then added to the bottom of that list. If no similar entry was 

found, the PWM was also added to the output list. During comparisons, Pearson correlation coefficients 

were calculated over all alignment possibilities and reverse complement combinations. We converted 

PWMs into 1-dimensional vector representations. Vectors were temporarily padded using samples from 

the genome-wide background nucleotide frequency distribution and renormalized for various 

alignments as needed. If a correlation value of at least 0.75 was found, two PWMs were considered 

similar. We reverted PWMs to their subsequence pattern forms and rescanned target regions, allowing 

up to one nucleotide mismatch from the pattern’s subsequence representation. PWM filtering 

comparisons were performed as before, and PWM outputs from this stage formed the output. 
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The de novo discovery results for all footprint subsets and cell types were combined, clustered, and 

filtered further into a final set of 683 motifs. The PWM representations were converted to their 

subsequence pattern forms and combined in descending Z-score order. The first pattern was added to 

the output list. Each subsequent pattern was compared to every entry of the output list. If no similar 

entry was found, the pattern was added to the bottom of the list. Pattern comparisons included all 

alignment possibilities and reverse complement combinations. For a given alignment, the patterns were 

compared sequentially, character by character.   In the event that all 'N' placeholders aligned, two 

patterns were declared similar if they had up to one character difference; otherwise, they were declared 

similar with up to two character difference. 

For the final stage of clustering, we determined the proportion of instances of one pattern that 

genomically overlapped instances from another pattern. All pairwise combinations between patterns 

were considered. We scanned twice for every pattern's instances. The first scan included only those 

instances that do not deviate from their motif pattern. The second included all instances that have up to 

one mismatch. Scanning occurred over all padded footprints, merged across all cell types. If the 

proportion of overlapping instances between two patterns was 0.1 or more in the first case and 0.33 in 

the second case, in either motif comparison direction, we discarded the pattern of lower Z-score. We 

considered all cases with any amount of overlap (at least 1 nt).  For example, if two patterns’ instances 

overlapped at one part of the genome by 5 nt, and two more instances overlapped in another part of 

the genome by 2 nt, we conservatively counted both cases toward the proportion of overlaps (in 

contrast to the potential requirement of counting overlapping proportions at fixed offsets between 

instances).  All patterns passing through this step made up the set of final motif models. 

5.2 – Motif matching 

We compared de novo motifs to motifs available as part of various databases, including TRANSFAC, 

version 2011.1, JASPAR Core, and UniPROBE using the TOMTOM software52, version 4.6.1. We filtered 

TRANSFAC and JASPAR Core for motifs annotated to the human genome, and mouse motifs in 

UniPROBE. Redundant motifs were filtered per database to a single motif using redundant motif-name 

heuristics (for example, CTCF_01 and CTCF_02 are highly similar in TRANSFAC). TOMTOM parameters 

were set to their default values during motif comparisons. When partitioning the de novo motifs, 

assigning each to a single category, the order of match assignment preference was to TRANSFAC, 

JASPAR Core, UniPROBE, and then to the novel motif category. 
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5.3 – Mouse scans of novel human motifs 

Novel de novo motifs (those with no motif match to entries of the TRANSFAC, JASPAR Core, and 

UniPROBE databases) were scanned across DNaseI hotspot regions of the mouse genome (build 

NCBI37/mm9) using FIMO at P < 1e-5.  Average cleavage profiles were generated and compared to 

analogous profiles of the human genome. 

5.4 – Nucleotide diversity in DNaseI footprints 

To quantify the nature of selection operating on regulatory DNA, we surveyed nucleotide diversity (π) in 

footprint calls. Population genetics analyses were performed on 53 unrelated, publicly available human 

genomes (Supplementary Table 4) released by Complete Genomics, version 1.1034.  Relatedness was 

determined both by pedigree and with KING62.  Two Maasai individuals in the public dataset (NA21732 

and NA21737) were not reported as related, but were found with KING to be either siblings or parent-

child.  NA21737 was removed from the analysis. 

We defined four-fold degenerate sites using NCBI-called reading frames  and the NimblegenSeqCapEZ 

Exome version 2.0 definition, downloaded from the NimbleGen website 

(http://www.nimblegen.com/products/seqcap/ez/v2/).  Repeats were defined by RepeatMasker, 

downloaded from the UCSC Genome Browser, version 29Jan2009/open-3-2-7 

(http://www.repeatmasker.org).  Exome and repeats were removed from all footprints prior to analysis. 

π calculation 

π for a single variant is 2pq, where p = major allele frequency and q = minor allele frequency.  π was 

calculated for each cell type by summing π for all variants and dividing by total number of bases 

considered.  Variant sites were filtered by coverage (>20% of individuals must have calls).  Additionally, 

Complete Genomics makes partial calls at some sites (i.e., one allele is A and the other is N).  These were 

counted as fully missing. 

6.1 – Cell type predominance - motifs within footprints 

We scanned hotspot regions for motifs in each cell type using the FIMO software tool with a maximum 

p-value threshold of 1e-5 and defaults for other parameters.  Scans included motif templates from 

TRANSFAC, JASPAR Core, UniPROBE, and novel de novo (those with no match to motifs in the 

https://mail.stamlab.org/exchweb/bin/redir.asp?URL=http://www.nimblegen.com/products/seqcap/ez/v2/
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aforementioned databases).  We filtered predicted motifs to those that overlapped footprints by at least 

1 nt.  For each cell type, we counted the number of discovered motif instances for a motif template and 

normalized to the total number of bases within footprints.  We created a row-normalized heatmap over 

results in selected cell types using the matrix2png program. 

6.2 – Proximal vs. distal regulators 

For every motif template, we quantified the number of gene-distal and gene-proximal instances 

overlapping footprints by at least 1 nt, with proximal defined as within 2500 nt of the TSSs of genes in 

the reference sequence (NCBI RefSeq).  The number of motifs found within a partition was scaled by the 

number of bases covered by footprints in that partition.  Finally, we rescaled the partition values to 

proportions that summed to one. 
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