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University of Washington 

Abstract 

Regulation of human hematopoietic stem cell lineage commitment 

Xiaoji Chen 

Chair of the Supervisory Committee: 

David Morris 

Department of Biochemistry 

Understanding the molecular mechanisms that govern human 

hematopoiesis remains a major goal of both developmental and clinical biology. 

My thesis projects focus on identifying and characterizing regulatory factors 

involved in myeloid commitment steps for human hematopoietic stem and 

progenitor cells (HSPCs), so as to expand them in vitro or direct them into 

desired lineages. 

I first studied the histone methyltransferases G9a and GLP, which play 

key roles during mammalian development through mono- and di-methylation of 
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histone H3 lysine 9 (H3K9me1/2), modifications associated with transcriptional 

repression. I found that G9a/GlP activity drives progressive, genome-wide 

H3K9me2 patterning in euchromatin during HSPC lineage specification. 

Remarkably, HSPCs continuously treated with UNC0638, a G9a/GlP small 

molecular inhibitor, better retain stem cell-like phenotypes and function during in 

vitro expansion. This expansion effect was further enhanced by co-treatment of 

SR1, an aryl hydrocarbon receptor (AHR) inhibitor. Moreover, UNC0638 treated 

HSPCs preferentially gave rise to megakaryocytes over other myeloid lineages 

when differentiating. These results suggest that G9a/GlP activity facilitates 

human HSPC lineage commitment and inform clinical manipulation of donor­

derived HSPCs in vitro. 

I also applied a high-throughput shRNA screening approach to identify 

genes controlling early myeloid differentiation of human HSPC. To aid in 

identification of candidate screen hits, data from the shRNA screen were 

compared to known hematopoietic/hematopoietic malignancy functions and 

mouse HSC eQTls. Potential self-renewal and differentiation genes were 

validated by a secondary screen. Further functional validations will involve gene 

knockdown experiments followed by flow analysis, colony-forming unit assays, 

and in vivo experiments in a canine transplantation model. Ultimately our results 

will facilitate in vitro and in vivo manipulations of human HSPC to control lineage 

commitment. 
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1.1 Hematopoiesis 

CHAPTER 1 

INTRODUCTION 

During mammalian development, hematopoiesis first takes place in the 

yolk sac, and then moves to the aorta-gonad mesonephros (AGM) region, the 

fetal liver and finally the adult bone marrow (Orkin and Zon 2008). The 

mammalian hematopoietic system is hierarchically organized such that the 

developmental potential to produce lineages and terminally differentiated cells is 

progressively restricted. In the current model, hematopoietic stem cells (HSCs) 

initially give rise to multipotent progenitors (MPPs), which are no longer capable 

of long-term self-renewal but maintain full hematopoietic lineage differentiation 

capacity (Bystrykh et al. 2005; Christensen and Weissman 2001; Morrison and 

Weissman 1994). MPPs differentiate into common lymphoid progenitors (CLPs) 

and common myeloid progenitors (CMPs) (Akashi et al. 2000; Kondo et al. 2001; 

Serwold et al. 2009). These cells, in turn, further differentiate into bi- and mono­

potent lymphoid and myeloid restricted progenitors, respectively. For myeloid 

lineages, these include bipotent granulocyte/monocyte progenitors (GMPs) and 

megakaryocyte/erythrocyte progenitors (MEPs). In the final step, fully lineage 
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restricted precursor cells (e.g., pro-megakaryocyte, pro-B-cell) mature into 

terminally differentiated effector cells. Thus, similar to other adult stem cell 

systems, partially restricted progenitors are responsible for generating all of the 

lineage-specific effector cells (i.e., erythrocytes, platelets, granulocytes, 

monocytes/macrophages, T-cells, etc.) (Orkin and Zon, 2008). In humans, this 

includes the daily production of >2x1 OA11 hematopoietic cells representing -11 

lineages, all of which arise from a small pool of self-renewing adult HSCs (Fig. 

1.1) ( Novershtern et al. 2011). 

Potential ~ . HSC , 
• MPP 

, / ~ 
CMP • CLP 

B cell T-cell NK-cell 

Erythrocyte i 
Monocyte 

MegaklfYocyte Granulocyte 

'. 

Platelet Specialization 

Figure 1.1. Model of human hematopoiesis. HSC give rise to two lineage 

restricted progenitor cells : CMP that gives rise to MEP GMP, which in turn 

differentiate into different types of myeloid blood cells; and CLP that gives rise to 

T cell, B cells, and nature killer cells. Cellular potential is gradually lost as the 

cells undergo specialization. (Figure modified from: 

https:/ldalev.med. harvard. edulassets/wil/ylhematopoiesis. jpg) 
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1.1.1 Hematopoietic stem cell 

It was first discovered over 50 years ago that there was a rare population 

of cells in the bone marrow, which, when injected into irradiated mice, could form 

colonies in the recipient spleens (Zon 2001). They were named colony-forming 

units-spleen (CFU-S). It was later found that transplantation of a single purified 

HSC into a lethally irradiated mouse was able to reconstitute the mouse's entire 

hematopoietic system (Ema et al. 2005). 

Previous studies indicated that human HSC could be identified by their 

ability to efflux of a mitochondrial dye, rhodamine 123 (Baum et al. 1992). They 

can also be characterized by cell surface markers Lin-CD34+CD3810/
-

CD90+CD45RA- (Majeti et al. 2007). Based on these phenotypes, HSC can be 

isolated by fluorescence-activated cell sorting (FACS). 

HSC is the most well studied human adult stem cell. As other stem cells, it 

can both self-renewal to maintain themselves, as well as differentiate into all 

lineages of blood cells. HSC are able to undergo asymmetric divisions, where 

one of the daughter cells remains a stem cell while the other one differentiates. A 

balance of HSC self-renewal and differentiate is determined by both intercellular 

factors and signals from the microenvironment. It is the most critical regulation 

particularly when the system is challenged (i.e. after stem cell transplantation). It 

is imperative that regardless of blood cell demand, the stem cell pool will be 

maintained. 

Three decades of research on mammalian HSCs has resulted in their 

prospective isolation and the identification of gene products and cognate 
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signaling pathways that affect cell growth and differentiation. However, our 

understanding of the complexity of the signaling events controlling these cell fate 

decisions is only just emerging, and methods to control stem cell fate remain 

elusive. This has significantly limited the successful application of new 

approaches for HSC transplantation, including clinical transplantation procedures 

for patients with cancer, marrow failure, hemoglobinopathies, auto-immune 

diseases, or any other clinical condition that could benefit from an infusion of 

HSCs or their progeny. 

1.1.2 Intrinsic and extrinsic factors regulating hematopoiesis 

Loss-of-function and gain-of-function studies have revealed critical roles of 

transcriptional factors in controlling HSC self-renewal, proliferation, and lineage­

specific differentiation. Dysregulation of the transcriptional network is often 

associated with hematopoietic disorders such as leukemia. 

Runt-related transcription factor 1 (Runx1, also named AML 1), LIM 

domain only 2 (LM02), and T-cell acute lymphocytic leukemia 1 (tal-1/SCL) are 

required for HSC survival and self-renewal (Fig. 1.2) (Orkin and Zon 2008). 

Runx1 is expressed in all HSCs in the mouse embryo as well as in the adult bone 

marrow (North et al. 2002). Mouse HSC that lacks of Runx1 failed to generate 

erthrocytes, myeloid cells, and lymphocytes (North et al. 2002). Translocation 

and point mutation of Runx1 are found in leukemia (Ng et al. 2010). Both LM02 

and tal-1/SCL are essential for embryonic hematopoiesis in vivo. Mice 

homozygously deleted LM02 or tal-1/SCL are "bloodless" and die at an early 
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stage in utero (Shivdasani and Orkin 1996). Abnormal activation of tal-1 ISCL is 

frequently found in acute T-cell leukemia (Shivdasani et al. 1995). 

On the other hand, several transcription factors have more lineage­

restricted roles. GATA binding protein 1 (GATA1) is a major regulatory factor 

controlling globin gene expression in erythroid differentiation. GATA1-null mice 

showed severe anemia (Gutierrez et al. 2008). shRNA knockdown of GATA1 in 

CD34+ cord blood cells inhibits STAT5-induced erythropoiesis (Wierenga et al. 

2010). A murine GATA1- erythroid cell line was generated to better study the 

function and mechanism of GATA1 in erythropoiesis (Suh et al. 2006). GATA2 is 

expressed in HSC as well as erythrocytes. GATA2-deleted mouse embryonic 

stem cells (ESCs) form significantly less erythroid colonies in vitro than the wild 

type control (North et al. 2002). PU.1 and CCAA T/enhancer-binding protein 

C/EBPa favor the commitment to granulocytes and monocytes (Friedman 2007). 

Ablation of PU.1 prevents the generation of granulocytes, monocytes, and T and 

B lymphocytes (Laslo et al. 2006). Deletion of C/EBPa in mouse fetal liver 

resulted in increased number of erythroid cells and reduced number of myeloid 

cells, while overexpression of C/EBPa in HSC induced myeloid differentiation at 

the expense of erythroid differentiation (Suh et al. 2006). 

Transcription factors physically and functionally interact with each other to 

form a regulatory network to control hematopoiesis. A good example is that, in 

cell fate choice of GMP, PU.1 actives Egr-2 and Nab-2, which induce 

macrophage and repress neutrophil differentiation. In contrast, C/EBPa up­

regulates Gfi-1, which promotes neutrophil and inhibits macrophage 
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differentiation. In addition, Egr/Nab-2 and Gfi-1 repress each other (Laslo et al. 

2006). Another example is that EKLF and Fli-1 antagonize each other to dictate 

erythroid versus megakaryocytic in lineage choice of MEP (Laslo et al. 2008). 

Critical transcription lactors lor blood development 
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Figure 1.2. Transcriptional control of hematopoiesis. 

(Figure adapted from Orkin, S.H. and Zon, L.I., 2008) 

Genome-wide gene expression analysis has made it feasible to map 

transcriptional profiles in different populations of blood cells. A global gene 

expression study has shown that the more immature long-term HSC largely 

expresses molecules related to their interaction with the microenvironment; short-
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term HSC preferably expresses genes involved in cell cycle initiation; while 

myeloid and lymphoid cells express lineage-specific markers (Ivanova 2002). 

Novel transcription factors that are up-regulated in HSCs vs. committed cells are 

being discovered, such as E2F1, SPIB, CNOT2, and HIF1A (Gomes et al. 2002). 

Furthermore, in an adult human, HSCs reside within a special bone 

marrow microenvironment, or the niche, which is composed of osteoblasts, 

macrophages, adipocytes, and fibroblasts (Fuchs et al. 2004). Direct and indirect 

interactions and molecular cross-talks between HSCs and niche cells are 

essential in maintaining HSCs in a quiescent, undifferentiated state. Niche cells 

secret chemokines that are necessary for the maintenance of the HSC, including 

Kitl (also known as kit ligand, stem cell factor, or steel factor), Interleukin-6 (IL-6) 

and stromal-derived factor-1 (also known as SDF1, or CXCL 12), jagged, BMP4, 

angioprotein (Renstrom et al. 2010). Disrupting the niche results in impaired 

hematopoiesis (Perry and Li 2007). 

HSCs are able to attach to the niche through adhesion receptors (e.g. N­

cadherin) and ligand-receptor interactions (e.g. Notch-Jagged) (Wilson and 

Trumpp 2006). Notch ligand Jagged 1 is expressed by cells within the bone 

marrow niche, while Notch1 and Notch2 are both expressed on the 

hematopoietic progenitor cells (Kumano et al. 2001). This indicates a role of 

Notch signaling in regulation HSC. In fact, activation of Notch1 inhibits 

differentiation and enhances self-renewal of HSC in vitro (Stier et al. 2002). 

Another niche-dependent signaling pathway, the WnUbeta-catenin pathway, also 

plays a key role in promoting HSC self-renewal in the absence of differentiation 
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(Renstrom et a!. 2010). Wnt3a deficient mice died at embryonic day 12.5, and 

Wnt3a-/- HSCs showed impaired proliferation and differentiation (Luis et a!. 

2009). 

HSC can be mobilized from their bone marrow niche to the peripheral 

blood by G-CSF. G-CSF induces proteases to cleave adhesion molecules on 

HSC (Greenbaum and Link 2010). In response to G-CSF treatment, HSC 

proliferate, detach from the niche, and enter into the circulating blood, from 

where they can be collected for purposes such as transplantation (Copelan 

2006). G-CSF-mobilized HSC differ from those in the bone marrow in that they 

are more uniformly quiescent. A DNA microarray comparing CD34+ cells from 

bone marrow vs. G-CSF mobilized peripheral blood has revealed different 

expression levels of genes involved in cell cycle (Graf et al. 2001). 

1.1.3 Ex vivo manipulation of HSCs 

One holdback of therapeutic application of human HSC is their inability to 

self-renewal and expand in vitro. Inadequate numbers of donor HSC is a major 

limitation of successful HSC transplantation (HSCT). One strategy clinicians use 

in umbilical cord blood transplantation (UCBT) to overcome this issue is to co­

fuse UCB cells from a second donor. Double UCBT correlates with a lower rate 

of relapse (Smith and Wagner 2009), which suggests that an increase in the 

number of HSC is benefit clinical outcomes. Great efforts have been made to 

expand HSC ex vivo. A mixture of cytokines, such as stem cell factor (SCF), and 

fms-related tyrosine kinase 3 ligand (FL T3L), are commonly added to the culture 

8 



of human HSC in order to support their growth and expansion. However, no more 

than a four-fold expansion of HSC has been achieved with combinations of 

cytokines, and a gradually loss of HSC potential was observed (Sorrentino 2004). 

Hox transcription factors are implicated in regulating HSC proliferation and 

differentiation. Previous studies have found that overexpression of HOXB4 or 

HOXA9 in HSC resulted in an increased self-renewal and extensive expansion of 

HSC ex vivo, while retaining their normal developmental potential (Antonchuk et 

al. 2002; Kirito et al. 2004). ConSidering that Notch and Wnt pathways are both 

present in the HSC niche and playa role in regulating HSC fate determinations, 

activation of these pathways is likely to result in expansion of the HSC pool. It 

has been shown that over-expression of Notch1 caused an increased self­

renewal in HSC (Renstrom et al. 2010). However, an increase HSC numbers 

was not achieved in a clinical setting of ex vivo expansion using Notch ligand 

(personal communication). Incubation of HSC with Wnt proteins WNT5A and 

WNT3A is also associated with an increased expansion of HSC (Sorrentino 

2004). A more recent study based upon a small molecular screen has 

discovered an aryl hydrocarbon receptor (AHR) antagonist, StemRegenin 1 

(SR1), which was able to promote ex vivo expansion of human HSCs, while 

retaining their normal developmental potential (Boitano et aI., 2010). 
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1.1.4 Megakaryopoiesis 

Megakaryocytes are big (50-100 IJm in diameter) cells with polyploid 

nuclei (up to 64N) (Szalai et al. 2006). During megakaryopoiesis (Fig. 1.3), HSCs 

first generate CMPs, which then differentiate into MEPs. MEPs are bi-potent, and 

can give rise to erythrocyte or megakaryocyte precursors. Megakaryocyte 

precursors then undergo a series of changes including endomitosis, organelle 

synthesis and cytoplasmic expansion. Mature megakaryocytes are no longer 

able to proliferate. During the formation of proplatelets, microtubules slide and 

overlap to drive proplatelet elongation. Besides, platelet granules and cellular 

organelle are transported to the end of proplatelets, from which platelets are 

released (Patel et al. 2005). One megakaryocyte can generate -104 platelets. 

_1011 platelets are produced daily in a human adult (Kaushansky 2007) and play 

important roles in hemostasis and thrombosis. Megakaryocytes are characterized 

by cells surface markers CD41 (integrin allb), CD42 (glycol-protein Ib) and CD61 

(integrin ~3) (Fig. 1.3 yellow arrows). TPO, a ligand to myeloproliferative 

leukemia virus oncogene (MPL, also known as CD11 0), is an essential cytokine 

for both HSC proliferation and megakaryocyte differentiation from HSC (Fig. 1.3 

green arrows). 
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Figure 1.3. Megakaryopoiesis. Shown are also cell surface markers (yellow 

arrows) and important cytokines (green arrows) in different developmental stages 

of megakaryopoiesis. 

(Figure adapted from Szalai et aI., 2006) 
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Thrombocytopenia patients have a low platelets count, which increases 

the risk of severe bleeding. It is one of the major complications post high-dose 

chemotherapy followed by HSCT (Nash et aI., 1996).4 million platelet 

transfusions are performed yearly in the USA to treat thrombocytopenia 

(Goodnough et aI., 2003). Nevertheless, in addition to the challenge of obtaining 

adequate numbers of donors, efficacious platelet support is also confounded by 

immune response to the donor platelets and by the fact that platelets can only be 

stored at room temperature, which increases the risk of bacterial contamination 

(Gandhi et aI., 2005). Developing an approach to produce and expand large 

number of autologous megakaryocytes ex vivo, which can then be reinfused with 

HSCT, has great clinical potential to accelerate platelets reconstitution. 

2.1 Epigenetic regulation 

L. 

Transcription factors and other regulatory genes have critical roles in 

controlling of hematopoiesis. However, they cannot address all the questions 

raised in HSC lineage differentiation. For example, given that all the cells share 

the same genetic information, what causes the heterogeneous phenotypes 

during development? And what ensures that differentiation only occurs in one 

direction and committed cells do not convert back to the stem cell in normal 

condition? These questions bring up another critical regulatory factor of the cell-

epigenetic regulation. 

Epigenetics refers to inherited alternations in gene expression through 

chromatin modulations that are independent of the DNA sequence 
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(Christopheren and Helin 2010). There are a variety of epigenetic modifications 

including: DNA methylation, histone methylation and acetylation, nucleosome 

remodeling, and noncoding RNA. These modifications interact with each other 

and form a complex regulatory network to control the cell fate decisions. Growing 

studies have suggested that epigenetic regulations are largely involved in cell 

fate determination, not only during the onset of differentiation but also in 

maintaining the differentiated state once it is set. 

The lineage-priming model of stem cell differentiation claims that stem 

cells, such as HSCs, maintain a relatively open chromatin (Attema et aI., 2007; 

Gaspar-Maia et aI., 2011) with less repressive marks compared to their mature 

progenies. This open chromatin structure allows for multilineage genes to be 

expressed at low levels. Proper differentiation requires up-regulation of preferred 

lineage-specific genes as well as shutting down genes of alternative lineages. 

Interfering in either way could result in altered cell fate (Orkin, 2003). During 

commitment, chromosomes become largely condensed, associated with DNA 

methylation, histone deacetylation, and increased levels of repressive marks 

histone H3 lysine 9 dimethylation (H3K9me2) and lysine 27 trimethylation 

(H3K27me3). Although generally stable, condensed chromosomes can be "re­

opened" in case of reprogramming or tumorgenesis (Gaspar-Maia et aI., 2011). 
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2.1.1 DNA methylation 

DNA methylation occurs at the 5' position of cytosine and predominantly in 

the dinucleotide CpG (Ginder et al. 2008). Most CpGs in the mammalian genome 

are methylated excepted for the CpG islands (CGls), which are CpG-rich regions 

often found near the gene promoters (Deaton and Bird 2011). DNA methylation 

inhibits gene transcription through direct interfering with the binding of 

transcription factors or through acting with methyl cytosine-binding proteins 

(MCBPs) and forming a complex that inhibits transcription initiation (Ginder et al. 

2008). DNA methylation can also recruit other epigenetic modifiers, such as 

histone methyltransferase, to the locus and cause long-term gene silencing in X 

chromosome inactivation, genomic imprinting, retrotransposon silencing, etc. 

(Bhutani et al. 2011). 

DNA methylation is carried out by DNA methyltransferases (DNMTs), 

which transfer the methyl group from S-adenosyl-methionine (SAM) to cytosine. 

There are two types of DNMTs: de novo methyltransferases DNMT3a and 

DNMT3b, which add methylation to completely un methylated DNA, and 

maintenance methyltransferase DNMT1, which methylate DNA when the other 

strand is already methylated (Ginder et al. 2008). 5mC can be converted to 5-

hydroxymethycytosine (5hmC) by the TET (ten-eleven translocation) family of 

proteins (Tahiliani et al. 2009), which may further lead to DNA demethylation 

(Tammen et al. 2012) (Fig. 1.4). 
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Figure 1.4. DNA methylation dynamics. 

(Figure adapted from Tammen et al. 2012) 

DNA methylation plays an important role in hematopoiesis. Previous 

studies have found that the de novo DNA methyltransferases Dnmt3a is required 

in mouse HSC differentiation (Challen et al. 2012). Dnmt3a-null HSCs have 

increased self-renewal ability but impaired differentiation due to inability to 

silencing their HSC genes (Challen et al. 2012). DNA methylation is dynamic 

during development. Hematopoietic genes whose expressions are repressed by 

DNA methylation in ESCs are de methylated in hematopoietic lineages 

(Calvanese et al. 2011). A decrease in Dnmt3a and Dnmt3b and global 

demethylation were observed during mouse erythropoiesis in vivo (Shearstone et 
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al. 2011). DNA methylation landscape also changes during HSC aging and is 

largely dependent on the proliferative history of HSCs. (Beerman et al. 2013). 

2.1.2 Histone methylation 

Another major mechanism for epigenetic regulation of the genome is 

histone modification. The N-terminal tails of histone that protrude from the 

nucleosome can be covalently modified by mechanisms such as acetylation, 

methylation, phosphorylation, and ubiquitination (Allis et al. 2007). Histone 

methylation plays a role in transcriptional regulation by either activating (e.g. 

H3K4me3, H3K27me1) or repressing (e.g. H3K9me2, H3K9me3, and 

H3K27me3) gene expressions (Vakoc et al. 2005). It is catalyzed by two types of 

methyltransferases-the protein arginine methyltransferases (PRMTs) and the 

histone lysine methyltransferases (HKMTs) (Allis et al. 2007). 
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Figure 1.5. Known methylation sites on H3 and H4, and associated histone 

methyltransferases. 

(Figure adapted from Bannister et al. 2002) 
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Histone methylation has a critical role in normal development and its 

disrupt is related to diseases such like cancer. Previous studies on ESCs have 

indicated that pluripotent stem cells maintain an open chromatin state (Gaspar­

Maia et al. 2011). During differentiation, chromatins become condensed, 

associated with DNA methylation, histone deacetylation, and increased levels of 

H3K9me2 and H3K27me3. This chromosomal condensation can be reverted 

during reprogramming or tumorgenesis (Gaspar-Maia et al. 2011). Homozygous 

mutation of the H3K9 methyltransferase Eset in mice results in preimplantation 

lethality (Meissner 2010). H3K4 methyltransferase MLL 1 is translocated in 

leukemia, and SMYD3 is overexpressed in colorectal cancer, liver, breast and 

cervical cancers (Malik and Bhaumik 2010). 

2.1.3 Histone methyltransferases G9a/GLP 

G9a/EHMT2 and GLP/EHMT1 are conserved protein lysine 

methyltransferases that play key roles in regulating gene expression and 

chromosome structure during mammalian development through de novo mono­

and di-methylation of histone H3 lysine 9 (H3K9me1/2) [reviewed in (Collins and 

Cheng, 2010)], histone marks associated with transcriptional silencing (Litt et aI., 

2001; Noma et aI., 2001; Su et aI., 2004; Wen et aI., 2009). G9a and GLP 

contain nearly identical Su(var)3-9 family SET methyltransferase domains, with 

which they bind and methylate H3K9meO/1 , and ankyrin repeat domains that 

create a methyl-lysine binding module which allows binding of H3K9me1/2 marks 
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separately from their catalytic domains (Fig. 1.5) (Collins et aI., 2008). Thus, G9a 

and GLP have separable "reading" and "writing" functions and can "read" its own 

marks, which may allow nucleation and spreading of H3K9me2 marks along 

chromatin (Collins and Cheng, 2010). 
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(Figure adapted from Collins and Cheng 2010) 

G9a is essential for early mouse embryo development and embryonic 

stem cell (ESC) differentiation (Tachibana et aI., 2002). Its loss abolishes 

methylated H3K9 in euchromatic regions (Rice et aI., 2003; Tachibana et aI., 

2002) and increases in H3K9 acetylation and H3K4 dimethylation (Tachibana et 

aI., 2002), both associated with transcriptional activation. However, H3K9 

trimethylation (me3) (Peters et aI., 2003), a transcriptional repressive mark found 
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in heterochromatic regions, is unaffected by G9a loss, and is maintained by other 

methyltransferases, e.g., Suv39h or Setdb1 (Peters et aI., 2003; Rice et aI., 

2003). G9a and H3K9me2 have been associated with euchromatic gene 

silencing in a number of cellular contexts: Oct4 gene in differentiating mESCs 

(Feldman et aI., 2006), NRSF/REST-mediated silencing of neuronal genes in 

non-neuronal lineages (Roopra et aI., 2004), and PRDI-BF1 silencing during B­

cell differentiation (Gyory et aI., 2004). The H3K9me2 mark can be found in 

isolated regions near genes and also in large Mb chromatin blocks that can be 

lineage-specific and/or lost in cancer cell lines, which may be indicative of 

structural roles in maintaining epigenetic memory during lineage formation (Wen 

et aI., 2009). However, precise roles for G9a/GLP-H3K9me2 patterning in stem 

cell self-renewal and lineage commitment and during human hematopoiesis have 

yet to be determined. 

BIX01294 (BIX), a chemical inhibitor of G9a, was previously reported to 

improve reprogramming efficiency of terminally differentiated cells into induced 

pluripotent stem cells (iPSCs) (Shi et aI., 2008a; Shi et aI., 2008b). Recent efforts 

to improve the effectiveness of BIX has led to the discovery of UNC0638, a BIX 

analogy with improved potency and reduced toxicity (Vedadi et aI., 2011). 

UNC0638 selectively inhibits G9a and its closely related partner GLP and 

significantly reduced H3K9me2 on endogenous genes and microRNAs (Vedadi 

et aI., 2011). 
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2.1.4 RNA interference 

It was first observed in plant that introduction of a transgene, which was 

supposed to deepen the color of the flowers, surprisingly resulted in bleached 

color (Napoli et al. 1990). This phenomenon is named "co-suppression". It was 

later found in Caenorhabditis elegans that sequence-specific silencing was 

induced by injection of double-stranded RNAs (dsRNA) (Fire et al. 1998). 

Further studies have confirmed that co-suppression in plants and gene silencing 

in C. elegans were caused by a similar mechanism, which was later termed RNA 

interference (RNAi) or post-transcriptional silencing . RNAi is evolutionarily 

conserved from worms to plants to mammals. Cells utilize RNAi as a mechanism 

to protect themselves from RNA virus, and to regulate expressions of 

endogenous protein-coding genes (Hannon 2002). The first published indication 

that small dsRNA could trigger RNAi in mammals came from Tucshl and 

colleagues, who demonstrated that short RNA duplexes resembling the cleavage 

products of Dicer could trigger sequence-specific silencing in mammalian cell 

lines (Elbashir et al. 2001). 

microRNA (miRNA) and small interfering RNA (siRNA) are two major 

small RNAs that are involved in RNAi (He and Hannon 2004) (Fig. 1.6). They are 

around 21-25-nucleotide long. miRNAs are derived from large pri-miRNA that 

forms a stem loop structure. Pri-miRNA is cleaved by two RNase III enzymes, 

Drosha and Dicer, sequentially. Mature miRNAs can load onto a RNA-induced 

silencing complex (RISC), which binds to the 3' UTR of its complementary mRNA 

and leads to post-transcriptional repression. On the contrary, siRNAs are derived 
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from long dsRNAs that can be introduced exogenously, and processed by Dicer 

into 21-2Snt long mature siRNAs. Unlike miRNA, which form an imperfect duplex 

with mRNA, siRNA form a perfect duplex with its targeting mRNA, and thus leads 

to the cleavage of the target. 
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It was previously suggested that many lineage-specific genes are 

expressed at mRNA level in HSC. However, their translations are "held back" by 

miRNAs until differentiation happens (Georgantas et al. 2007). Microarray 

analysis of miRNAs discovered an enrichment of 11 miRNAs in mouse HSC, 

including miR-125a-5p, -196b, -99a, -130a, -125b-5p, -542-5p, -181c, -155,-

193b, -126a-3p, and let7e (O'Connell et al. 2010). A recent study has identified 

miRNA-125b-2 as a positive regulator of megakaryopoiesis and its 

overexpression is related to megakaryoblastic leukemia (Klusmann et al. 2010). 

More miRNAs have been found to playa role in human and mouse 

hematopoiesis: miR-221 and -222 down-regulate human erythropoiesis 

(Georgantas et al. 2007). miR-150 is up-regulated by TPO during human 

megakaryocytic differentiation (Barroga et al. 2008). miR-155 blocks human 

megakaryocytosis by targeting Ets-1 and Meis1 (Romania et al. 2008), whereas 

miR-27a inhibits Runx1 and promotes megakaryopoiesis in mice (Ben-Ami et al. 

2009). miR-181 and miR-146 drives mouse CLP differentiation to B 

lymphopoiesis and T lymphopoiesis, respectively (Georgantas et al. 2007). It will 

be of great interest to further study roles of more miRNAs in hematopoiesis. 

siRNAs are synthesized in vitro, and can be delivered directly into cells by 

electroporation or lipid-mediated transfection, which leads to transit knockdown 

of targeting genes. In contrast, short hairpin RNAs (shRNAs) are produced 

endogenously through RNA polymerase III promoters, and then processed by 

Drosha and Dicer. shRNAs can be cloned into a viral vector to allow delivery and 

integration into the cell genome, which results in stable expression of shRNAs 
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and long-term knockdown of their targets (Rao et al. 2009). shRNA expression in 

the cell can be further manipulated using an inducible vector and/or selective 

markers. 

RNAi has become a methodology of choice for knocking down gene 

expression in a variety of biological systems, including mammals. In the past 6 

years, the use of RNAi in cultured mammalian cells has delivered new insights 

into potential cancer drug targets (Aza-Blanc et al. 2003; MacKeigan et al. 2005; 

Berns et al. 2004), apoptosis (Paddison and Hannon 2002), cell survival (Kittler 

et al. 2004), p53-induced cell cycle arrest (Westbrook et al. 2005), 26s 

proteasome function (Bartz et al. 2006) cell division (Ali et al. 2009), 

transformation of human mammary epithelial cells (Hope et al. 2010), and 

chemotherapeutic sensitization (Chen et al. 2012). Collectively, these studies, 

along with those in invertebrates, have demonstrated the utility of RNAi in 

probing gene function in unbiased, systematic ways. 

RNAi has also been applied to the study of human and mouse 

hematopoiesis (Schaniel et al. 2009; Silva et al. 2005). Sauvageau and 

colleagues recently examined shRNA-mediated knockdown of 20 mouse polarity 

factors in an in vivo engraftment screen for mouse HSC activity (Silva et al. 2005) 

and identified three genes this approach, including Msi2, Pard6a, and Prkcz, 

required for HSC repopulation and maintenance. Another study by Larsson and 

colleagues targeted -1300 human genes using shRNAs in human cord blood 

cells (Schaniel et al. 2009) to identify shRNAs that affect colony-forming cell 

(CFC) activities of HSPCs during ten weeks of in vitro outgrowth. Three genes 
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were identified, including EXT1, PLCZ1, and STK38, whose knockdown affected 

the frequency of CFC-CFUs and other phenotypes, including increases in 

erythrocyte progenitor activity, long-term culture initiating cell activity, and 

NOD/SCID repopulating cell activity. Both studies demonstrate the potential 

power of RNAi as a tool for studying mammalian hematopoiesis. However, they 

also highlight the shortcomings, including the necessity of using small screening 

pools to accommodate heterogeneous progenitor pools and protracted biological 

assays to indirectly measure stem cell activity. The ability to routinely and 

rigorously apply RNAi to human HSPCs would facilitate further understanding of 

self-renewal, lineage commitment, and hematological disease. 
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2.1 Cell culture 

CHAPTER 2 

MATERIALS AND METHODS 

Human CD34+ cells (> 90% purity) from granulocyte colony-stimulating 

factor (G-CSF) mobilized peripheral blood or bone marrow of healthy adults were 

purchased from the Fred Hutchinson Cancer Research Center (FHCRC) Cell 

Processing Shared Resource. Cells were maintained in either serum-containing 

medium [IMDM with 10% fetal calf serum, supplemented with 1X antibiotics and 

100 ng/ml stem cell factor (SCF), interleukin-6 (IL-6), Flt3 ligand (Flt3L), 

thrombopoietin (TPO), G-CSF, and 200 ng/ml interleukin-3 (IL-3)] or the serum­

free medium (StemSpan@ SFEM from StemCell Technologies), supplemented 

with 1X antibiotics and 100ng/ml SCF, IL-6, Flt3L, TPO). UNC0638 (Sigma) and 

SR1 (AMRI) were resuspended in DMSO and used at indicated concentrations. 

Cells were cultured at 3rC in 5% C02/95% air at a density between 0.5-1.5 

million cells/ml. Bone marrow and peripheral blood mononuclear cells prepared 

from samples obtained from healthy adult donors after informed written consents 

using forms approved by the FHCRC IRB in accordance with the Declaration of 

Helsinki. 
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2.2 Flow cytometry and FACS sorting 

Cells were harvested, washed, and re-suspended in 2% calf serum. Flow 

cytometric analysis and FACS sorting was performed using the following 

antibodies: C03-FITC (BO, # 555332), C011 b (Beckman Coulter, # IM0530), 

C014 (BO, # 347493), C015 (BO, # 555401), C019 (BO, # 560994), C034-APC 

(BO Biosciences, # 555824), C038-PerCP-Cy 5.5 (BO, # 551400), C045 (BO, # 

340943), C045.1 (eBioscience, # 25-0453-82), C045RA-FITC (Invitrogen, # 

MHC045RA01), C045RA-Pacific Blue (Invitrogen, # MHC045RA28), C049f­

FITC (BO, # 561893), C056 (BO, # 340723), C090-PE (BO, # 555596), C0123-

PE (BO, # 554529), C0235a (Beckman Coulter, # IM2212U). Cells were 

analyzed on FACSCanto flow cytometer (BO) and sorted on FACSAria cell sorter 

(BO). Data analysis was performed using FlowJo (Three Star), or the software 

developed by the laboratory of Brent Wood that allows for high-level multicolor 

flow analysis (Wood, 2006). 

2.3 ChiP-sequencing 

3-5 million cells were harvested and fixed with 1 % formaldehyde at room 

temperature (RT, 10 min), followed by glycine (125 mM) to stop the crossing 

linking reaction (RT, 5 min). Cells were then washed twice with ice cold PBS 

containing 1X PMSF, and then resuspended in cell lysis buffer (1% SOS, 10 mM 

EOTA, 50 mM Tris, pH 8.1) containing 1X protease inhibitor cocktail (PIC, 

Roche) and PMSF, and rotated (4°C, 30min). Extracts were sonicated using a 
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Bioruptor (Diagenode) set on "HIGH" for 30 cycles of 30 sec ON and 30 sec OFF 

according to manufacturer's instructions to achieve chromosome fragment 

lengths of 200-400 bp. After sonication, samples were spun down (4°C, 10 min) 

and the supernatant was transferred to a new tube for ChiP. 100 1-11 sonicated cell 

extract was then diluted in 400 1-11 ChiP Dilution Buffer (Magna Chlp™ G kit, 

Millipore, # 17-611) containing 1X PIC and PMSF, and incubated with 1 I-Ig of 

anti-H3K9me2 (Abcam, # ab1220) at 4°C for 1 hour while rotating. 20 1-11 protein 

G magnetic beads were then added per sample and incubated at 4°C overnight 

while rotating. ChiP samples were then washed with low and high salt buffers, 

reverse-crosslinked, and purified. Samples are prepared for Iliumina-based 

sequencing using Encore NGS Library System I (NuGEN, # 300-08). High­

throughput sequencing-by-synthesis (HT-SBS) was performed on an Iliumina 

HiSeq 2000 sequencer available at the FHCRC Genomics. Shared Resource. 

This procedure yielded between 96-284 X 106 sequence reads per sample, 

-80% of which aligned to human genome version CRCh37/hg 19 (UCSC 

Genome Bioinformatics Group). 

2.4 ChlP·sequencing data analysis 

Uniquely mapping and properly paired sequencing reads of 49 bp were 

aligned to the human genome (hg19) assembly using the Burrows-Wheeler 

Aligner (bwa-0.5.9) (Li and Durbin 2009) and converted to BAM files using 

SAMtools (v1.4) (Li et al. 2009). Peaks were called and WIG read density graphs 

were created using Model-based Analysis for ChiP-Seq (MACS v1.4.2) as 
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described (Zhang et al. 2008) using a p-value cutoff of 1 x 10-6 and a 350 bp 

bandwidth to match the average DNA fragment length. Genomic overlaps were 

defined as peaks sharing at least 100bp, determined using GenomicRanges (R 

package version 1.6.7) (Aboyoun et al.). In order to limit the number of false 

positives, a peak had to replicate to be passed to further analysis. Replication 

was defined as sharing at least 100bp in biological replicate. The peak centers 

distance to transcription start sites was annotated using ChlPpeakAnno (R 

package version 2.2.0) (Zhu et al. 2010). ChiP-Seq peaks are displayed using 

the Broad Integrative Genome Viewer. Hive plots were created using HiveR (R 

package version 0.2-1) (Hanson 2011). These plots were designed as an 

improved way to visualize gene interaction networks; however, they are also well 

designed to look at genomic information on multiple samples simultaneously. The 

axes are scaled with accurate genomic distance, nodes are sized relative to peak 

width and edges connect overlapping peaks. Nodes that are unique to a given 

condition do not have edges attached. Centers located within 5kb upstream or 

downstream of the TSS were qualified as TSS-associated. Centers within the 

gene body at least 5kb from TSS were qualified as intragenic and centers outside 

of the gene bodies and at least 5kb from TSS were considered intergenic. 

Features were obtained from UCSC Genome Browser, the retroelements data 

was created by the program RepeatMasker as described (Smit AF A and Green 

P. 1996-2010.) and the CpG Islands are defined as DNA regions greater than 

200bp, more than 50% GC content and a ratio of GC dinucleotides greater than 
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0.6 expected based on G's and C's in sequence (Gardiner-Garden and Frommer 

1987). 

2.5 ChIP-qPCR 

ChiP DNA from H3K9me2 (Abcam), H3K9me3 (Abcam), RNA pol II 

(Millipore) or a negative control rabbit immunoglobulin (lgG) were used as 

template for qPCR. qPCR was performed using SYBR® Green PCR Master Mix 

(Applied Biosystems) and 7900HT Fast Real-Time PCR System (Applied 

Biosystems). DNA isolated from 10% ChiP input was used for normalization. 

Fold enrichment was determined by Z,e! method (n = 3). Pre-validated ChIP­

qPCR primers (QIAGEN) were used to amplify TSS regions of genes of interest, 

and GAPDH as a control. 

2.6 Immunofluorescence 

Cytospin preparations were made, fixed with 4% formaldehyde for 15 min 

at RT, permeabilized and blocked with 0.3% Triton X-100, 5% goat serum in PBS 

for 60 min at RT, then incubated with anti-H3K9me2 (Cell Signaling, # 4658S) 

rabbit antibody over night at 4 degrees. Primary antibodies were detected with 

goat anti-rabbit IgG (H+L) conjugated with AlexaFluor 488 nm (Invitrogen, # 

A 11070). The nuclei were counterstained with mounting medium with 150 ng 

DAPI (Vector Labs, # H-1200). Whole slides were scanned, and images were 

acquired at both GFP and DAPI channels using the TissueFAXS microscopic 

system (TissueGnostics). All images acquired were normalized to the 
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background using ImageJ and then analyzed using TissueQuest. Mean GFP 

intensity was obtained from each cell. We also used the OeltaVision microscope 

(60X water objective) to take Z-series images, which were then deconvoluted 

and visualized using maximal intensity projection. 

2.7 CFSE cell division assay 

1 million C034+ cells were suspended in 1 ml warm PBS with 0.1 % BSA 

and labeled with 3 IJM CFSE (Invitrogen, # C34554) at 37 DC for 10 min. 5 

volumes of ice cold PBS with 0,1% BSA was added to stop labeling. Cells were 

incubated on ice for 5 min and then washed and cultured with or without 

UNC0638 and SR1 for later analysis. Flow cytometry was performed on day 1 

and day 7 with anti-C034-APC antibody. 100% of the cells were labeled and 

within a single peak on day 1. 

2.8 Colony-forming unit assay 

500 cells were plated in 1 ml MethoCult® H4434 (Stem Cell Technologies, 

#04434) methylcellulose medium in a 35 mm dish, and incubated with a open 

water dish in a 150 mm culture dish at 3rC in 5% C02/95% air. All CFUs were 

plated in triplicates. Burst forming unit-erythroid (BFU-E), CFU-granulocyte/ 

macrophage (CFU-GM) and CFU- granulocyte/erythrocyte/monocyte/ 

megakaryocyte (CFU-GEMM) were scored 14-16 days after plating by two 

persons independently. 
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Note that CFU-C assay is useful in the way that it measures the frequency 

of hematopoietic progenitor/precursor cells in a population. However, it is limited 

for several reasons. First, the most primitive hematopoietic stem cells are 

quiescent, and will not divide in respond of the growth factors in the medium. 

Second, CFU-C assay only measure colonies formed up to 3 weeks, while 

primitive hematopoietic cells need a longer time to differentiate into mature 

progenies. 

2.9 Gene expression microarray 

Human PBMC CD34+ cells, were thawed and treated the next day with the 

following conditions for 48 hours: 0.02% DMSO, 1 IJM SR 1, 2 IJM UNC0638 or 1 

IJM SR1 plus 2 IJM UNC0638. Total RNA was extracted using TRlzol® Reagent 

(Invitrogen) and subjected to The HumanHT-12 v3 Expression BeadChip 

(iliumina). To establish differential expression, t-tests were performed using 

'Iimma' (R package 3.12.0) (Smyth 2005). Genes that were changed in 

expression in any of the three conditions with a minimum unadjusted p-value of 

0.001 were used to create a differential expression gene list. Multi-dimensional 

scaling was performed using the 'MASS' (R package 7.3-18) (Venables and 

Ripley 2002). GO-term and UniProt-Tissue analysis was performed by Database 

for Annotation, Visualization and Integrated Discovery (DAVID) (Huang da et al. 

2009). Gene expression profiling was performed using the Broad Institute's 

Molecular Signatures Database (MiSig) (Su et al. 2004; Subramanian et al. 

2005). 

31 



2.10 Western blot 

1-2 million human C034+ cells from bone marrow or G-CSG mobilized 

blood were treated with 1 j..IM or 2 j..IM UNC0638 for 48 hours and lysed with 

RIPA buffer (150 mM NaCI, 50 M Tris, pH 7.5, 2 mM MgCI2, 0.1% SOS, 2 mM 

OTT, 0.4% deoxycholate, 0.4% Triton X-100, 1X protease inhibitor, and 1X 

benzonase nuclease) before subjected to SOS-PAGE and western blot using 

antibodies to H3K9me1 (1:1000, Active Motif, # 39249), H3K9me2 (1:1000, Cell 

Signaling, # 4658), H3K9me3 (1:1000, Abcam, # ab8898), H4 (1 :2000, Abcam, # 

ab17036) and ~-actin (1 :1000, Cell Signaling, # 3700). 

2.11 Limiting dilution assay 

Human PBMC C034+ cells were expanded with 0.01% OMSO, 1 j..IM SR1, 

1 j..IM UNC0638, or 1 j..IM SR1 plus 1 j..IM UNC0638 in serum-free medium with 

cytokines for 14 days. 0.2 million, 1 million, or 6 million expanded cells from each 

treatment group were then injected intravenously into sublethally irradiated NSG 

mice (n = 5). Flow cytometric analysis of human C045+ cells in the mice blood 

was performed at weeks 2, 4, and 7 to determine human cell engraftment. Mice 

were sacrificed at week 8 and bone marrow was harvested from the femurs. 

Human C045+ cells in the mice bone marrow were analyzed by flow cytometry. 

Mice that contained over 0.1 % human C045+ cells in the bone marrow were 

scored positive. The frequency of SCIO-repopulating cell (SRC) was calculated 

using the software L-Calc (StemCell Technologies) (Boitano et al. 2010). 
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Note that this method is limited because its readout mainly depends on 

the homing ability of the grafts (i.e. if the cells fail to reach a proper niche, they 

cannot generate progenies). Another weakness of the NOD/SCID mouse model 

is the development of thymomas in a few months, which prevent long-term 

studies [4]. Besides, mice are small animals whose hematopoietic system is 

distinctive from that of humans, given that the blood one mouse makes in its 

whole life is similar to the amount of a human makes in one day. This may affect 

the study of human hematopoiesis in the mouse as well. Larger animals such as 

dog, sheep and cynomolgus monkeys are also investigated to study long-term 

hematopoiesis [71]. 

2.12 Canine autologous transplantation 

Canine bone marrow was aspirated and cells were selected for C034+ 

with the canine-specific monoclonal antibody 1 H6 as previously described (Bruno 

et al. 1999). The CD34+ cells were isolated and analyzed using BO FACS Aria 

cell sorter (BO Biosciences, San Jose, CA) and C034+ purity was >95.5%. 

CD34+ cells were plated in 1 ml aliquots of 100,000 cells/mL in 24-well plates in 

StemSpan media (Stem Cell Technologies, Vancouver, BC, Canada) 

supplemented with recombinant human (rh)FL T3-L, rhTPO (Life Technologies, 

Grand Island, NY), recombinant canine (rc)SCF and rclL6 (Kingfisher Biotech, St. 

Paul, MN), all at 100 ng/mL. Cells were treated with StemRegenin (SR1, 

Cellagen Technology, San Diego, CA) and UNC0638 at 1 IJM each, incubated for 

14 days at 3rC and 5% C02, and subcultured as needed to maintain cell 
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density of 1-2 x1 06 cells/mL. On day 14 cells were collected, centrifuged at 

150xg for 10 minutes, suspended in RPMI media (without supplements or phenol 

red) and immediately infused into the conditioned recipient (9.2 Gray TBI). Dog 

H501 was given supportive care with antibiotics, intravenous fluids and 

transfusions as described (Georges et al. 2010). 

2.13 shRNA cloning 

shRNAs were digested from the pGIPZ lentiviral vector (Open 

Biosystems) between EcoRI and Xhol sites, gel purified and ligated into the 

same sites in the MSCV-L TRmiR30-PIG (MLP) retroviral vector (Open 

Biosystems). The MLP vector also contains a GFP reporter and puromycin as a 

selectable marker. Clones were verified by sequencing and plasm ids were 

extracted by Maxiprep (Qiagen). 

2.14 Transduction 

Non-tissue culture treated 6-well plate was coated with CH296 

(RetroNectin, from ClonTech) at the concentration of 2 mg/cm2 for 2 hours at 

room temperature. CH296 was then moved and replaced with a similar volume of 

sterile 2% BSA in HBSS. After incubation at room temperature for 0.5 hour, BSA 

solution was moved and replaced by a similar volume of 2.5% 1 M Hepes, pH 7.0 

in HBSS. Coated plate can be sealed with parafilm and stored at 4° C before 

use for several weeks. Hepes solution was removed before infection. Filtered 

virural supernate (through a 0.45 j.Jm filter) or concentrated virus was added on to 
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the plate. Human CD34+ cells were then added on top of the virus dropwise 

(1 mllwell). Protamine sulfate was added at 8 mg/ml. 1X fresh medium was added 

48 hours post infection. GFP+ cells were sorted 72 hours post infection to 

determine knockdown. 

2.15 Quantitative real-time peR 

Cells were harvested or sorted from ex vivo cultures and washed with 

PBS twice. Total RNA was extracted by TRlzol® Reagent (Invitrogen). cDNA 

was synthesized using the SuperScript® III First-Strand Synthesis System 

(Invitrogen). qPCR primers were designed using a online tool Primer3 

(http://frodo.wLmit.edu) or ordered from Qiagen QuantiTect Primer Assays. 

qPCR was performed using SYBR® Green PCR Master Mix (Applied 

Biosystems) with 7900HT Fast Real-Time PCR System (Applied Biosystems). 

Beta-actin was used as an endogenous control. Relative transcript abundance 

was analyzed using 2-'P method. 

2.16 DNA methylation analysis 

DNA was isolated using the Gentra Puregene Cell Kit (Qiagen). 1 

microgram of DNA was treated with bisulfite using the Zymo EZ DNA Methylation 

Gold kit (Zymo Research) according to the manufacturer's protocol. Samples 

were run using the Infinium Human Methylation 450 BeadChip (Iliumina), 

according to the manufacturer's instructions. Arrays were scanned on an IIlumina 

HiScan scanner and the average % methylation was calculated using lIIumina's 
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GenomeStudio Methylation module, without sample normalization or 

backgrounding. 
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CHAPTER 3 

G9A1GLP-DEPENDENT HISTONE H3K9ME2 PATTERNING DURING HUMAN 

HEMATOPOIETIC STEM CELL LINEAGE COMMITMENT 

3.1 G9a/GLP-mediated H3K9me2 patterning is progressive during HSPC 

lineage commitment and reversed by UNC0638 treatment 

To investigate roles for G9a and GLP methyltransferase function during 

human HSPCs lineage specification, we first examined global chromatin 

H3K9me2 patterning using chromatin immunoprecipitation (ChiP) (O'Geen et al. 

2011). To this end, H3K9me2 ChiP-sequencing analysis was performed on the 

following cell populations: HSC-enriched CD34+CD90+CD381°CD45RA- cells 

(Majeti et al. 2007), unfractionated CD34+ cells (which contain mainly committed 

progenitors), CD41 +CD61 + committed megakaryocytes (Megs) (Novershtern et 

al. 2011), CD3+ T-cells (Majeti et al. 2007), and the HS-5 human bone marrow 

stromal cell line (Graf et al. 2002) (Fig . 3.1). 

To ensure that H3K9me2 ChiP-seq peaks were specific to H3K9me2 and 

G9a/GLP activity, in control ChiP-seq experiments in unfractionated CD34+ cells, 

we used a recently developed chemical probe, UNC0638, which potently and 
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selectively inhibits both G9a and GLP methyltransferase activity by blocking 

substrate access to their SET methyltransferase domains (Vedadi et al. 2011). 

The ChiP-seq analysis revealed an unexpected series of results (Chen et 

al. 2012) (Fig. 3.1). The most primitive HSCs displayed small and fewer 

H3K9me2 peaks. Unfractionated CD34+ cells, containing mainly committed 

progenitors, showed higher, defined peaks that generally occur at CpG islands. 

In differentiated Megs and T-cells, peaks arising in CD34+ cells were elaborated 

on and expanded to form nearly identical H3K9me2 territories in genic regions. 

Figure 1A and Supplemental Figure S2A show representative samples of 80 kb 

of chromosome 11 and chromosome 19 from the ChP-Seq data. Virtually all 

genic regions showed a similar pattern. 

Evidence for this pattern arose from multiple analyses of the ChiP-seq 

data. First, the frequency of sequence reads per H3K9me2 peak (when 

examining either peak height or width) showed progressive increases from more 

primitive to differentiated cells, which were blocked and reversed by UNC0638 

treatment of CD34+ HSPCs (Fig . 3.18). 

Second, examination of the H3K9me2 peaks arising in CD34+ HSPCs 

revealed approximately 95% overlap peaks in Megs and T-cells (Fig. 3.1C-E). 

Figure 1 D shows this result for the entirety of chromosome 11 using a hive plot 

representation (Hanson 2011), where green lines show H3K9me2 marks shared 

between HSPCs, Megs and T-cells and red lines show marks that have 

expanded in Megs and T -cells. The results show that almost all H3K9me2 marks 
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found in HSPCs are transmitted to Megs and T-cells. Hive plots for other 

chromosomes showed identical results (data not shown). 

Third, another dramatic result revealed in the hive plots was that there are 

no lineage-specific H3K9me2 patterns transmitted from HSPCs to Megs or from 

HSPCs to T-cells . These patterns would appear as purple lines between HSPCs 

and Megs or HSPCs and T -cells. This was true for all other chromosomes as well 

(data not shown). This notion is supported by correlation of peak overlaps in 

different populations: Megs and T-cells share >90% of overlap (Fig. 3.1 E). These 

analyses support a model for H3K9me2 patterning in HSPC differentiation that is 

progressive, but not lineage specific, at least within the cell types we examined. 

However, further analysis of other lineages needs to be done to confirm that 

H3K9me2 patterning is not lineage specific. 

Fourth, H3K9me2 peaks formed in CD34+ cells spread to surrounding 

regions in chromatin. As shown in Figure 1A, H3K9me2 marks appear to be 

nucleated at CpG islands and then spread through genic regions in between. 

Spreading is suggested by the fact that the differentiated populations are derived 

from CD34+ HSPCs. In fact, for this experiment the Meg population was derived 

during in vitro differentiation directly from the CD34+ HSPCs used for ChiP-seq. 

Moreover, these patterns were not due to in vitro differentiation artifacts, since 

uncultured T-cells (from two different donors) gave the same highly reproducible 

pattern as the Megs. Thus, the results indicate that H3K9me2 marks nucleated in 

CD34+ cells spread to surrounding regions to form larger territories. 
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Figure 3.1, ChiP-Seq analysis of H3K9me2 patterning during HSPC lineage 

commitment. ChiP-Seq was performed on cells from two independent donors 
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with antibody against H3K9me2 in progressive stages of the hematopoietic 

lineages or treated with UNC0638. CD34+CD90+CD381°CD45RA HSCs (denoted 

here as "CD90+"), and CD41 +CD61 + megakaryocytes were sorted from the same 

donors as the CD34 + HSPCs on day 4 and day 10 of primary cell cultures, 

respectively. CD3+ T-cells were sorted from the blood of two different donors. 

CD34+_UNC indicates HPSCs treated with 2 ~M of UNC0638 for 48 hrs. (A) 

Representative tracks from the Integrated Genome Viewer. The y-axis indicates 

the number of reads (from 0 to 50) detected in 50 bp windows. "_1" and "_2" 

indicate biological replicates. (8) The numbers of reads for each peak, limited by 

the sample with the fewest called peaks. (C) Venn diagram showing peak 

overlap between CD34+ HSPCs and CD41+CD61+ Megs. Overlapping peaks 

share >100bp. (0) Hive plot representing chromosomes 11. The peaks are 

displayed with accurate genomiC distances as blue nodes along the length of the 

axes, while peak overlaps are displayed as connected lines. Green lines 

represent peaks shared between CD34+ HSPC, Meg and T-cell. Red lines 

represent peaks shared only between Meg and T-cell. Unshared peaks by the 

three populations would appear as purple lines. (E) Heat map representing the 

fraction of overlaps between different samples. Overlaps are defined as read 

density peaks sharing at least 100 bp. The number of peaks overlapping is 

divided by the total number of peaks in that sample and displayed as a value 

between 0 and 1. Comparisons are made to the samples in the rows. 
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3.2 H3K9me2 nucleation sites in HSPCs are enriched at H3K4me3 sites and 

CpG islands 

We next examined H3K9me2 HSPC peak overlap with nine epigenetic 

marks and other genetic landmarks in HSPCs and differentiated cells. For 

epigenetic marks, we used the data from the work of (Cui et al. 2009), who 

examined multiple histone marks in CD133+ human HSPCs and also 

differentiated CD36+ erythrocytes (Fig. 3.2A). The most frequent overlap 

occurred with H3K4me3. This mark is found at transcription start sites (TSSs) 

and is associated with active transcription when present with histone H3K36me3, 

which is found in gene bodies (Kolasinska-Zwierz et al. 2009), or epigenetic 

bivalency when found in combination with repressive marks (Attema et al. 2007; 

Gaspar-Maia et al. 2011). Interestingly almost 50% of the H3K4me3 peaks in 

either CD133+ or CD36+ cells overlapped H3K9me2 peaks in CD34+ HSPCs. 

This result is also consistent with H3K9me2 being enriched at TSSs (Fig. 

3.2B,C), and may suggest roles for G9a/GLP in facilitating chromatin structure 

and bivalency at promoters primed for expression in HSPCs. 

Another interesting overlap was H4K20me1 (-21 % of peaks in CD36+ 

cells) (Fig. 3.3A). In contrast to H3K4me3, this mark is found away from TSSs 

and has been implicated in regulating DNA damage responses, mitotic 

condensation, and also gene expression (Beck et aI., 2012). 

However, the most striking overlap was with CpG islands (CGls) (Fig. 

3.2D,E), which are DNA regions of high CpG density and are less likely to be 

methylated (Gardiner-Garden and Frommer 1987; Hodges et al. 2011). CGls are 
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generally near the gene promoters and are associated with regulation of gene 

expression (Saxonov et al. 2006). There are 28,691 predicted CpG islands in the 

human genome (Cocozza et al. 2011). Of these, 79% are associated with an 

H3K9me2 peak in C034+ HSPCs (Fig. 3.20), which represents 47% of total 

H3K9me2. This result strongly suggests that nucleation of H3K9me2 peaks is 

coordinated with CpG islands in CD34+ HSPCs. 

Taken together, these results demonstrate: that H3K9me2 patterning is 

progressive during HSPC lineage specification; that H3K9me2 nucleation 

frequently occurs at CpG islands in HSPCs; that patterning events are dependent 

on G9a/GLP methyltransferase activity; and that UNC0638 treatment alters 

H3K9me2 patterning to better resemble those observed in primitive HSCs. 
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Figure 3.2. Overlaps between H3K9me2 and other epigenetic marks and genetic 

landmarks. (A) Overlap between H3K9me2 peaks in CD34+ HSPCs and 9 other 

histone marks in CD133+ HSPCs using data from the work of Cui et aI., 2009. (8) 

Percentage of H3K9me2 peak associations with gene bodies and transcription 

start site (TSS). CD34+ cells show enrichment at the TSS and deficiency in 

intergenic regions. (C) H3K9me2 peak frequency relative to TSS of genes. (0) 

Overlap between H3K9me2 peaks and UCSC CpG islands in CD34+ HSPCs. (E) 

Overlaps between H3K9me2 in CD34+ population and CpG islands, LINEs and 

SINEs are displayed as a number of H3K9me2 peaks. 
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3.3 G9a/GLP-H3K9me2 patterning is not required for maintenance of global 

DNA methylation in HSPCs 

The strong overlap of H3K9me2 nucleation sites in CD34+ cells with CpG 

islands suggested the possibility that H3K9me2 patterning may be coordinated 

with DNA methylation. For example, G9a is shown to directly bind to 

maintenance DNA-methyltransferase, DNMT1, during S phase in Cos-7 cells 

(Esteve et al. 2006), and G9a deficient mouse embryonic stem cells display DNA 

hypomethylation (Ikegami et al. 2007). Therefore, we performed DNA 

methylation array analysis probing 99% of Ref Seq genes and 96% of CpG 

islands in CD34+ cells with and without UNC0638 treatment (Fig. 3.3). However, 

UNC0638 treatment did not lead to global changes in DNA methylation . In fact, 

only -0.02% methylation probes showed over 2-fold difference compared to the 

DMSO control. These results suggest that inhibition of G9a/GLP activity and 

H3K9me2 patterning does not grossly perturb DNA methylation patterns in 

HSPCs, consistent with previous observations in human cancer cell lines (Vedadi 

et al. 2011). 
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Figure 3.3. Treatment of UNC0638 did not 

alter global DNA methylation levels in HSPCs. 

Shown are absolute values of methylation 

levels (0 indicates unmethylated and 1 

indicates completely methylated) of CD34+ 

HSPCs treated with UNC0638 or DMSO 

control by DNA methylation array. 
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3.4 Nuclear staining of H3K9me2 confirms progressive patterning in 

committed HSPCs 

In order to confirm that H3K9me2 patterning is progressive during HSPC 

lineage commitment, we next performed immunofluorescence (IF) staining of 

H3K9me2 marks in primitive and committed HSPCs. This analysis revealed that 

sorted CD34+CD90+CD381°CD45RA HSCs showed significantly less nuclear 

staining than total CD34+ population (Fig. 3.4A,8). Cells stained with secondary 

antibody only were used as negative control (Fig. 3.4C). Moreover, H3K9me2 

staining in total CD34+ cells revealed the emergence of nuclear speckles or foci. 

As noted above, UNC0638 treatment revealed that increases in H3K9me2 

staining and nuclear speckling arose as a result of G9a/GLP activity (Fig. 3.4A). 

The quantification of staining did not examine foci per se but the entire nuclear 

staining intensity (Fig. 3.48); the difference in foci formation is likely to be more 

dramatic than total nuclear staining. The formation of H3K9me2 foci in committed 

HSPCs is consistent with progressive H3K9me2 patterning and development of 

H3K9me2-depependent higher order chromatin changes during lineage 

specification. 
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Figure 3.4. Nuclear stain,ing of H3K9me2. (A) Deconvoluted z-section pictures of 
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). 
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3.5 Inhibition of G9a/GLP in HSPCs results in promiscuous transcription of 

lineage-specific genes and affects transcriptional regulation of certain gene 

clusters 

To evaluate the effect of G9a/GLP-dependent H3K9me2 on regulation of 

gene expression we performed microarray gene expression analysis on 

unfractionated CD34+ cells with or without treatment with UNC0638 (Fig . 3.5). 

Only 158 genes showed significant alterations in expression (Table 3.1). 

Interestingly, among the 103 genes up-regulated by UNC0638 were those 

normally expressed in more mature hematopoietic cells and also other tissues, 

including lung, liver, and brain, as assessed using the Uniprot-tissue database 

(Fig. 3.5A), and the Novartis normal tissue compendium (Fig. 3.5B). Portions of 

these results were confirmed by RT-qPCR analysis (Fig. 3.5C). 

Among the most significantly up-regulated genes by UNC0638 were the 

embryonic and fetal hemoglobin genes, HBE1, HBG1, and HBG2 (Bauer and 

Orkin 2011) (Fig. 3.5C,E). These genes are found in a cluster of embryonic, fetal 

and adult hemoglobin genes on Chr11 p15.5, which are progressively activated 

and repressed during development by a DNA element up stream of the cluster 

called the locus control region (LCR) (Chaturvedi et al. 2009). Consistent with our 

results, G9a/GLP-H3K9me2 has been shown to facilitate silencing of HBE1, 

HBG1, and HBG2 during mammalian development by altering chromatin 

secondary structure of LCR and the fetal hemoglobin genes (Chaturvedi et al. 

2009). 
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SYMBOL log2FC P.Value MLLT11 0.547312 3.43E-05 LRFN3 0.469626 0.000335 
HBG2 1.945674 1.96E-11 SKAP1 0.616643 3.80E-05 ADORA3 0.448017 0.000355 
CD96 1.487514 1.81E-10 DHRS9 0.602386 3.97E-05 MAD1L1 0.43788 0.000363 
HBG1 1.828907 2.20E-10 PTMS 0.568305 4.07E-05 SLC16A3 -0.4959 0.000368 
CD96 1.293908 5.90E-10 TAF7 -0.53736 4.51E-05 NPC1 0.517713 0.000382 
TCN1 1.519349 1.18E-09 FHL2 0.6204 4.59E-05 SIPA1L2 0.42515 0.000386 
FCER1A 1.241277 3.44E-09 TPSAB1 0.56491 5.28E-05 GIMAP5 0.426359 0.000389 
MS4A2 1.14863 4.51E-09 ZNF329 -0.60072 5.75E-05 ZNF260 -0.42599 0.000404 
HBE1 1.279155 6.24E-09 ST8SIA6 0.600464 5.97E-05 FAM90A1 0.416989 0.000441 
PRG3 1.060402 7. 74E-09 UAP1L1 0.560081 6. 66E-05 CD74 0.417821 0.000476 
ZNF274 -1.00866 2.13E-08 TPSAB1 0.678078 7.02E-05 PPM1E 0.418218 0.000487 
BEX1 1.001096 3.66E-08 CD44 0.500936 7.84E-05 ZFP82 -0.43401 0.000488 
ZSCAN18 -0.99646 4.37E-08 ZNF615 -0.49782 8.05E-05 SNURF -0.40967 0.000495 
GZMB 1.409646 4.40E-08 'GAL -0.53844 8.31 E-05 LXN 0.496934 0.000504 
CLECL1 1.240812 1.26E-07 KIR2DL3 0.5086 8.44E-05 0.436466 0.000512 
CLEC5A 1.223797 4.51 E-07 MARCKS 0.533842 8.80E-05 ACVR1 0.445424 0.000513 
RHAG 0.813105 6.48E-07 RHOBTB3 0.502988 9.10E-05 DUSP23 0.434965 0.000522 

0.80976 6.70E-07 ZNF285A -0.53763 9.54E-05 SYNGR1 -0.42986 0.000547 
MX2 0.733394 1.05E-06 CPA3 0.546216 9.69E-05 B4GALT5 -0.41608 0.000588 
ALAS2 1.201562 1.13E-06 ATP6VOE2 0.5036 0.000101 C10orf58 0.524144 0.000595 
LOC64914~ 0.731518 1.91 E-06 CEBPD -0.50484 0.000102 ADNP2 -0.42545 0.000598 
HCP5 0.876209 1.93E-06 TIGD7 -0.48624 0.000106 ZNF671 -0.40627 0.000606 
BEX2 1.04146 2.11E-06 C3orf14 0.86113 0.000107 BTF3 0.468794 0.000608 
SEZ6L2 0.720057 2.84E-06 CTXN1 -0.49855 0.000107 ICOS 0.436346 0.000632 

0.67449 2.86E-06 HNRNPA3 -0.48456 0.000109 JARID2 -0.47883 0.000661 
HTATIP2 0.712222 2.93E-06 NAT8B 0.484796 0.000117 ADCYAP1 0.542196 0.000669 
CBS -0.85272 2.93E-06 CPS1 0.541865 0.000124 CD69 -0.41568 0.000672 
PRTN3 -0.6621 3.60E-06 TMEM22 0.492805 0.000124 PPP2R2B 0.417332 0.000685 
ZNF185 0.779629 4.82E-06 ETS1 0.472632 0.00014 P2RY10 0.4037 0.000686 
LPAR5 0.641131 5.54E-06 HLA-DMB 0.471571 0.000143 0.418504 0.000691 
ZNF544 -0.72526 5.68E-06 F12 -0.51532 0.000153 HNMT 0.397756 0.000698 
CD93 0.627368 6.30E-06 HLA-DPA1 0.491586 0.000153 FM01 0.404501 0.0007 
MYCN -0.67028 6.38E-06 PRR6 -0.46492 0.000158 TUBB3 0.441754 0.000705 
LOC730051 -0.72763 6.47E-06 FCGRT -0.46312 0.000164 MUC1 -0.41748 0.000707 
ZNF274 -0.64109 6.58E-06 FBN2 -0.50131 0.000176 AMHR2 0.608267 0.000712 
CHGB 0.63188 6.79E-06 HBD -0.57721 0.000177 ZNF17 -0.39742 0.000714 
CRIP1 -0.62889 7.33E-06 ZNF529 -0.52376 0.000179 CEACAM6 0.424659 0.000743 
CCL23 0.850026 7.75E-06 ENSA -0.55879 0.000183 TCEAL3 0.390881 0.000748 
FCF1 -0.62257 7.84E-06 0.536172 0.000186 IL 18BP 0.401412 0.00075 
AKR1C3 0.633024 8.78E-06 ZNF562 -0.55858 0.000189 ZNF773 -0.44313 0.000773 

0.634274 1.19E-05 ZIK1 -0.49058 0.000196 TRO 0.454252 0.00078 
CCL23 0.654996 1.26E-05 HBBP1 1.504344 0.000227 CCDC26 0.885214 0.000786 
HAVCR2 0.652208 1.75E-05 ID2 0.505444 0.000227 INPP1 0.396757 0.000794 
RNASE3 0.738275 1.80E-05 AKR1C4 0.442951 0.000243 MGC61598 -0.40046 0.000805 
CCL5 1.037313 1.91 E-05 MYL4 0.809072 0.000273 LYAR -0.38856 0.000827 
GALC 0.584149 1.94E-05 FCAR 0.460292 0.000281 AQP2 0.395925 0.000882 
CCL5 0.682667 2.45E-05 GAMT -0.44942 0.000284 CCDC42 0.467678 0.000896 
PSAT1 -0.60133 2.60E-05 DLC1 0.447538 0.000288 FCF1 -0.46447 0.000908 
HLA-DRA 0.701363 2.65E-05 WBP5 0.461076 0.00029 VLDLR -0.38845 0.000948 
TIMP1 0.629228 2.76E-05 ZNF256 -0.48427 0.000302 -0.39926 0.000952 
HLA-DMA 0.568867 2.79E-05 TMSL8 0.499805 0.000302 S100A8 -0.74134 0.000955 
ZDHHC19 -0.63472 2.87E-05 0.438039 0.00032 C1orf59 0.461413 0.000956 
ASCL2 -0.57242 3.04E-05 TAF15 -0.54505 0.000329 CLC -0.38544 0.000984 

Table 3.1. 158 genes whose expressions were significant altered by UNC0638 (p<O.OO1). 
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In addition, we found evidence for G9a/GLP-dependent regulation of other 

gene clusters, including Chr6p21 (HLA-DRAlHLA-DPA1), ChrXq22 

(BEX1/BEX2), Chr17q11 (CCLS/CCL23) and Chr19q13 (ZNF329/ZNFS44) (Fig. 

3.SD-H). For the latter zinc finger (ZNF) cluster, UNC0638 treatment resulted in 

repression of gene expression, rather than de-repression (Fig. 3.4F), suggesting 

that G9a/GLP activity is required for the maintenance of their expression in 

HSPCs. Previous studies have found a protein motif called Kruppel-associated 

box (KRAB) domain in the majority of ZNF genes on chromosome 19, which is 

critical for protein-protein interaction (Eichler et al. 1998). KRAB-ZNF genes are 

largely involved in transcriptional repression (Eichler et al. 1998). 

These results suggest, first, that inhibition of G9a/GLP by UNC0638 

results in promiscuous transcription of hematopoiesis-affiliated and non­

hematopoiesis-affiliated genes in HSPCs, and, second, that G9a/GLP affects 

local structure of chromatin at specific gene clusters in HSPCs. Primitive HSCs 

have been hypothesized to have a more "open" chromatin structure that 

promotes promiscuous transcription of both non-hematopoietic and 

hematopoietic differentiation genes (Hu et al. 1997; Mfmsson et al. 2007; 

Miyamoto et al. 2002). Our data indicate that G9a/GLP and H3K9me2 patterning 

may help restrict transcriptional promiscuity during HSPC differentiation. Thus, 

one intriguing implication is that H3K9me2 helps facilitate adoption of alternate 

chromatin structures required for lineage commitment and specification. If true, 

inhibition of G9a/GLP and H3K9me2 patterning may block or delay lineage 

commitment. 
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Figure 3.5. Inhibition of H3K9me2 patterning in HSPCs results in up-regulation of 

multi-lineage gene expressions and affects transcriptional regulation of certain 

gene clusters. (A) Tissue classifications of genes that were significantly changed 

in expression by UNC0638 with the Uniprot-tissue database, (8) Gene 

expression profiling performed using the Broad Institute's Molecular Signatures 

database. Genes that were considered differentially expressed were compared to 

the Novartis normal tissue compendium. Multi-lineage genes up-regulated by 

UNC0638 were shown. (C) qPCR analysis confirmed the microarray results that 

UNC0638 treatment largely increased genes of diverse lineages but had mild 

effect on HSC-related genes or AHR. *Student's t-test, p <0.01. (D-H) Clusters of 

genes that were significantly changed in expression by UNC0638. Looking for 

genes in close proximity in the differential expression set identified these 

clusters. Fold change represents gene expression change between CD34+ 

HSPCs treated with UNC0638 compared to DMSO control. Arrows indicate 

transcription directions. 
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3.6 Inhibition of H3K9me2 patterning promotes primitive cell phenotypes 

and expansion of CD34+ cells, which is further enhanced by SR1 

To examine the possibility that G9a/GLP inhibition may delay or block 

adoption of HSPC cell fates, we performed a series of UNC0638 treatments on 

ex vivo cultures of CD34 + HSPCs followed by flow analysis of CD34 and lineage 

cell surface markers (Fig. 3.6). During a two-week time course, we observed that 

UNC0638 treatment increased the proportion of CD34+ cells (23.6% in 

UNC0638-treated vs. 9.2% in the cytokines alone) while diminishing 

differentiated CD15+ cells (Fig. 3.6A). UNC0638 treatment also led to increases 

in the number of total nucleated cells (TNCs) and CD34+ cells, with 1 11M 

UNC0638 having the best expansion effect (Fig. 3.68). Moreover, UNC0638 

treated HSCs also better retained CD49f, a marker associated with long-term 

repopulating HSCs (Notta et al. 2011) (Fig. 3.6C). These experiments were 

repeated multiple times with CD34+ cells derived from bone marrow of normal 

donors or peripheral blood of G-CSF mobilized donors with similar effects. 

Molecular studies revealed that G9a and GLP had similar expression in CD34+ 

primitive cells and CD34- differentiated cells (Fig. 3.6D), and that UNC0638 

treatment led to global loss of H3K9me2 (-2- to 4-fold) in HSPCs and a lesser 

decrease in H3K9me1 (-1.4-fold) without affecting H3K9me3 levels or the 

expression of G9a, consistent with direct inhibition of its catalytic activity (Fig. 

3.6E-K). 

To further evaluate the effect of UNC0638 in promoting primitive HSPCs, 

we compared and combined it with treatments of SR1, a small molecule inhibitor 
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of AHR, which was recently shown to promote expansion of human HSPCs in ex 

vivo cultures (Boitano et al. 2010). Flow analysis revealed that single treatments 

with UNC0638 and SR1 enhanced the proportion of more primitive HSPCs (Fig. 

3.6A), indicated by: CD34+, CD38 IO
, CD90+, and CD45RA (Majeti et al. 2007; 

Manz et al. 2002) compared to the no-drug control on day 14. SR1 treatments 

reproduced previously published results. Remarkably, co-treatment with SR1 and 

UNC0638 approximately doubled the effect of either drug alone for retention of 

CD34+CD381o and CD34+CD90+ cells, resulting in CD34+ retention as high as 

84% after 14 days of culture, compared to only 12% in untreated controls. Similar 

results were obtained from CD34+ cells from G-CSF mobilized and bone marrow 

cells from multiple donors (Fig. 3.7A and data not shown). 

To determine the cause of increase in CD34+ cells, we performed 

cumulative cell counts and viability assays for the total nucleated cells produced 

by HSPC cultures for 21 or 31 days, as well as total CD34+ cells produced during 

the same time period. The results demonstrated that the increase in proportion of 

CD34+ cells was due to increased expansion of CD34+ cells. Notably, double 

treatment increased G-CSF mobilized CD34+ expansion >120-fold by day 17 and 

bone marrow CD34+ cells nearly 400-fold by day 31, while individual treatments 

and mock controls were considerably less potent (Fig. 3.7C and data not shown). 

Importantly, the live-dead cell ratio did not change significantly between mock 

and treatments (Fig. 3.6L), demonstrating that the increased cell counts were not 

due to increase in cell survival. Moreover, carboxyfluorescein succinimidyl ester 

(CFSE) dye retention assays revealed that by day 7 all cells in culture had 
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undergone at least four cell divisions, including CD34+ cells (Fig. 3.6M). Thus, 

SR 1 /UNC0638 treatments did not result in maintenance of large numbers of 

quiescent cells. However, treated cultures did exhibit better dye retention, 

suggestive of expansion of slower dividing primitive celis (Cheng et al. 2000; 

Zhang et al. 2006). 

Similar results were obtained using different media formulations, with or 

without serum and altered cytokine conditions (e.g., using EPO instead of TPO or 

EPO plus TPO) (Birkmann et al. 1997) (Fig. 3.6N,O), albeit overall CD34+ 

retention varied by treatment. Moreover, another substrate-competitive inhibitor 

of G9a/GLP, BIX01294 (Kubicek et al. 2007), phenocopied UNC0638 treatments 

for CD34+ retention (Fig. 3.6P), while the use of a N-methyl analog of UNC0638, 

UNC0737, which is highly similar in structural but over 300-fold less potent 

against G9a/GLP than UNC0638 (Vedadi et al. 2011), had no effect on HSPC 

expansion (data not shown). Both results further suggest that UNC0638 inhibition 

is specific to G9a/GLP activity. 
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Figure 3.6. Inhibition of H3K9me2 patterning promotes primitive cell phenotypes 

and expansion of CD34+ cells. (A) Flow analysis of day 1 vs. day 11 bone 

marrow (BM) CD34+CD381o cells. CD34+CD3810 cells were cultured with or 

without UNC0638 for 11 days. Multi-color flow analysis was performed on CD34 

(HSPC maker) and CD15 (differentiated granulocyte marker). Lineage markers 

include: CD3 (T-cell), CD11b (monocyte/granulocyte), CD14 (monocyte), CD15, 

CD19 (B-cell), CD56 (natural killer cell) and CD235a (erythrocyte) (Baum et aI., 

1992; Manz et aI., 2002). Colors shown are: red, CD34+; magenta, CD15+; blue, 

HLA-DRhi; cyan, HLA-DR1o
; green, CD13hi. Data are representative of multiple 

independent experiments using G-CSF-mobilized peripheral blood mononuclear 

cell (PBMC) or BM derived CD34+ cells. (8) UNC0638 from 0.5 IJM to 2 IJM 

increased the number of both total nucleated cells (TNCs) and CD34+ cells, with 

1 IJM having the greatest expansion effect on CD34+ cells. (C) mRNA expression 

of G9a and GLP in CD34 HSPCs vs. CD34 differentiated cells. (E-G) Western 

blot analysis of G-CSF mobilized peripheral blood mononuclear cell (PBMC) 

or bone marrow (BM) derived CD34+ cells treated or untreated with UNC0638 for 

48 hours. Total histone H4 or beta-actin were used as loading controls. (H) 

59 



Relative expression of G9a mRNA in PBMC and BM CD34+ cells treated (yellow) 

or untreated (red) with 2 ~M UNC0638 for 48 hours. (I-K) ChIP-qPCR measuring 

levels of H3K9me2 (G) and H3K9me3 (H) at GAPDH and several HSPC-related 

genes. Normal mouse IgG was used as negative control (I). Red, DMSO control; 

yellow, UNC0638. *Student's t-test, p < 0.01. (L) Percentage of live/dead cells 

was determined by flow cytometry. Results are presented as mean +/- SD (n = 

3). Control, blue diamonds; UNC0638, green triangles; SR1, red squares; 

UNC0638 plus SR1, purple crosses. (M) CFSE labeled CD34+ cells were 

cultured with DMSO control, 1 ~M UNC0638, 1 ~M SR1, or 1 ~M UNC0638 plus 

1 ~M SR1 for 7 days. Gates were drawn based on day 1 CFSE fluorescence. 

Numbers indicate cell divisions. Percentages of total cells with 5 to 10 divisions 

are indicated in the pie charts. (N) Percentage of BM CD34+ cells in serum-free 

media with three different growth-factor combinations (100 ng/ml TPO, 3 U/ml 

EPO, or 100 ng/ml TPO plus 3 U/ml EPO; all media also contained 100 ng/ml 

SCF, 100 ng/ml Flt3L, and 100 ng/mIIL-6.), and four treatments (DMSO control, 

1 ~M UNC0638, 1 ~M SR1, or 1 ~M UNC0638 plus 1 ~M SR1). (0) Flow 

analysis of CD34 and CD90 in CD34+ cells cultured 8 days in medium containing 

10% serum. (P) Flow analysis comparing treatments of BIX01294 (BIX) and 

UNC0638. Data shown here are day 12 PBMC CD34+ cells. 
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3.7 SR1 and UNC0638 have divergent effects on HSPC expansion and gene 

expressions 

Given the observed differences in HSPC responses to SR1 and UNC0638 

single treatments, we further investigated the mechanism of SR1- and UNC0638-

dependent HSPC expansion on different HSPCs subpopulations. We began by 

analyzing CD45RA positive and negative progenitor pools, since UNC0638 

increased the proportion of CD34+CD45RA- cells while SR1 increased the 

proportion of CD34+CD45RA+ cells (Fig. 3.7A). To this end, we purified 

CD34+CD45RA- and CD34+CD45RA+ populations from day-4 HSPC cultures, 

which had not previously been treated with SR1 or UNC0638, and performed 

expansion assays on the isolated cells (Fig. 3.7D). The results revealed that 

UNC0638 had no effect on the CD34+CD45RA+ subpopulation, while SR1 

preferentially stimulates its expansion. By contrast, both drugs had similar effects 

on CD34+CD45RA cells (-8-fold peak expansion) and combined treatment 

resulted in 13-fold peak expansion (Fig. 3.7D). 

To further refine this experiment, expansion assays were performed on 

five pools of myeloid progenitors available in the HSPC culture system: HSCs, 

MPPs, CMPs, MEPs and GMPs (Fig. 3.7E). Progenitor pools were isolated by 

FACS and then expanded with or without SR1 and UNC0638. In these assays, 

SR1/UNC0638 co-treatment most dramatically affected the primitive HSCs (Le., 

CD34+CD90+CD381°CD45RA-)-the CD34+ cells expanded -50-fold after 14 days 

in SR1/UNC0638, compared to -6-fold expansion for untreated controls. 
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Moreover, single treatments were less effective than co-treatment, except for the 

CD45RA+ GMP pool, where UNC0638 had no effect (Fig . 3.7E). 

We next examined SR1- and UNCC0638-dependent changes in HSPC 

gene expressions to help determine the degree of similarity in their molecular 

mechanisms of action. We performed gene expression analysis for single treated 

and co-treated CD34+ HSPCs. The results revealed a degree of divergence for 

singly treated HSPCs by cluster and multidimensional scaling analysis (Fig. 

3.7F,G). In fact, there was little overlap between single treatments and few over 

all genes that showed significant changes (Fig . 3.7H). These results suggest that 

UNC0638 and SR1 act through different mechanisms. 
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Figure 3.7. UNC0638 and SR1 additively enhanced retention of primitive 

HSPCs. (A) Flow analysis of P8MC CD34+ cells on day 1 (pre-treatment) or day 

14 cultured with control (0.01% DMSO), UNC0638, SR1 or UNC0638/SR1 dual 

treatment. Primitive HSPCs are detected by CD34+CD3810 (top panels), 

CD34+CD90+ (middle panels), and CD34+CD45RA- (bottom panels). (B-C) Fold 

expansion of total nucleated cells (8) and CD34+ cells (C) from control (blue 

diamonds), UNC0638 (green triangles), SR1 (red squares), or UNC0638 plus 

SR1 (purple crosses) treated conditions (n = 3). *Student's t-test, p < 0.01. (0) 

Unfractionated CD34+ cells were expanded in normal culture condition for 4 days 

and then sorted into two populations: CD34+CD45RA- and CD34+CD45RA+, 
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which contain HSC/MPP/CMP/MEP and GMP, respectively. Mean fold expansion 

of CD34+ cells from sorted CD34+CD45RA- or CD34+CD45RA+ cells was 

calculated (n = 3). *Student's t-test, p < 0.01. (E) Unfractionated CD34+ cells 

were expanded in normal culture condition for 4 days and then sorted into 5 

defined populations (HSC, MPP, CMP, MEP, and GMP) using known cell surface 

markers. Mean fold expansion of CD34+ cells from each sorted population was 

calculated. Control, blue diamonds; 1 IJM SR1, red squares; 1 IJM UNC0638, 

green triangles; 1 IJM UNC0638 plus 1 IJM SR1, purple crosses. (F-H) PBMC 

CD34+ cells were treated with control, UNC0638, SR1 or UNC0638 and SR1 for 

48 hours and then subjected to gene expression microarray analysis. (F) 

Supervised clustering of these 434 differentially expressed genes arising from 

treatments in HSPCs (P<0.001). "_1" and "_2" indicate independent experiments 

of two donors. (G) Multi-dimensional scaling of 434 differentially expressed 

genes between treatment conditions. (H) Venn diagram showing extent of 

overlap in differential gene expression arising from UNC0638, SR1, and 

UNC0638/SR1 treatment of HSPCs. p < 0.001. 
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3.8 UNC0638 and SR1 treated HSPCs better retain ability to engraft and 

repopulate in vivo in mouse and dog 

These results suggest that both UNC0638 and SR1 treatments are 

capable of enhancing the ex vivo expansion of CD34+ populations and combining 

the two compounds multiplies the effect of either one alone. In order to 

demonstrate retention of stem cell activity in vivo, we performed engraftment and 

repopulation experiments using SR1 and UNC0638 expanded HSPCs in small 

and large animal models of HSC transplantation. 

We first measured SCID-repopulating cells (SRC) in expanded human 

HSPC cultures using limiting dilution assays (LDA) in immune compromised mice 

(Szilvassy et al. 1990). In these assays, day 14 expanded HSPCs in mock, single 

or co-treated conditions were injected into sub-lethally irradiated NOD/Scid/IL-2 

receptor-y null (NSG) mice (n = 5). Eight weeks post-injection, percentages of 

human CD45+ cells in mouse bone marrow were examined to determine SRC 

frequency. By this assay, single drug treatments resulted -2-fold in increase in 

the number of SRCs over mock treatment, while co-treatment resulted in -5-fold 

increase (Fig. 3.8A). Importantly, human CD45+ cells contained both myeloid 

(CD33+) and lymphoid (CD19+) cells, indicating that the expanded cells retained 

multilineage reconstitution potential in vivo. However, it should be note that in 

control experiments, in which freshly isolated G-mobilized CD34+were injected 

into NSG mice, as few as 200,000 CD34+ cells displayed engraftment and 

multilineage differentiation in mice (n=5), whereas no mouse was engrafted with 

200,000 UNC0638/SR1 expanded day-14 CD34+ cells (n=5). This suggests that 
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while SR1/UNC0638 treatment does enhance retention of primitive stem cell 

markers and stem cell activity compared to the no-drug control expanded cells, 

the overall stem cell activity as measured in this surrogate assay still diminishes 

when compared to unexpanded cells. 

We next examined the effects of SR1/UNC0638 treatment on HSC activity 

during expansion of canine CD34+ cells, as previous studies conducted over four 

decades show that the outcomes of HSC transplantation in dogs accurately 

predict the outcomes in human patients (Ostrander and Giniger 1997; Thomas 

and Storb 1999). To this end, a recipient dog was given 9.2 Gray total body 

irradiation (TBI), a myeloablative dose, and then infused with autologous day-14 

SR1/UNC0638 expanded HSPCs, 1.7x1 07 total nucleated cells/kg. To evaluate 

reconstitution, absolute neutrophil counts (ANC) were monitored daily until 

complete hematopoietic recovery for 84 days post-transplantation. Remarkably, 

transplantation of SR1/UNC0638 expanded cells led to full recovery of the 

recipient. (Georges et al. 2010) (Fig. 3.8B). These results are consistent with the 

notion that SR1/UNC0638 expansion, at the very least, sustains canine HSC 

activity during 14-day expansion of HSPCs. This is in contrast to an unpublished 

study (n=4), in which canine CD34+ HSPCs cultured for 7-10 days in cytokines 

only, failed to engraft in dogs conditioned with 9.2 Gy TBI (Mielcarek M., personal 

communication). 

These results strongly suggested that SR1/UNC0638 co-treatment allow 

retention of primitive HSCs during in vitro expansion. It holds promise for 

expanding HSPCs for transplantation purposes (Dahlberg et al. 2011). 
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Figure 3.8. UNC0638 and SR1 treated HSPCs better retain ability to engraft and 

repopulate in vivo in mouse and dog. (A) Engraftments of human day-14 

expanded HSPCs in immunodeficient mice. Frequency of SCID-repopulating 

cells (SRC) was calculated by Poisson statistics (n = 5). The number of SRCs in 

each group was calculated by multiplying its frequency by the total cell number at 

day 14. (8) Engraftment kinetics of absolute neutrophil count (ANC) in dog H501 

that received 9.2 Gray TBI and 1.7x107/kg expanded autologous CD34+ cells, 

which were cultured for 14 days in UNC0638 and SR1 (red line). As a positive 

control (grey lines), shown is ANC recovery after major histocompatibility 

complex matched littermate or unrelated cord blood progenitor cell 

transplantation with unmanipulated cells in 13 dogs after 9.2 Gy TBI infused with 

cell doses comparable to H501 . Dotted line indicates ANC = 500 cells per IJI. 
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3.9 Discussion 

Here, we examined roles for G9a/GLP activity in normal human HSPCs 

using an in vitro culture and differentiation system and a newly developed 

chemical probe targeting G9a/GLP, UNC0638 (Vedadi et al. 2011). Our studies 

have led to several unexpected findings. First, they reveal that G9a/GLP­

dependent H3K9me2 patterning is progressive during HSPC lineage 

commitment: H3K9me2 marks are nucleated at 79% of CpG islands in CD34+ 

HSPCs and then spread to surrounding regions during differentiation to form 

characteristic H3K9me2 territories in euchromatic regions of all chromosomes. 

Second, they suggest that G9a/GLP and H3K9me2 patterning may help restrict 

transcription of multi-lineage genes during HSPC differentiation. Third, they show 

that UNC0638 treatment in G-CSF mobilized peripheral blood and bone marrow 

derived CD34+ HSPCs promotes retention of primitive HSCs in vitro, and that this 

effect is enhanced by co-treatment with the AHR inhibitor SR1 (Boitano et al. 

2010). Fourth, they demonstrate that UNC0638 and SR1 target primitive HSCs, 

but do so through different mechanisms, as judged by differences in expansion 

effects on committed progenitors and gene expression profiles after treatments 

(Fig. 3.9). Taken together, these results suggest that G9a/GLP-dependent 

H3K9me2 patterning plays key roles in early lineage commitment of adult 

HSPCs. However, these results also raise several questions regarding G9a/GLP 

function and H3K9me2 marks in HSPCs. 
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Figure 3.9. Summary of findings. Primitive HSCs display fewer and smaller 

H3K9me2 marks than immature progenitor cells. H3K9me2 developed in 

progenitor cells were transmitted and further expanded in differentiated cells. 

This progressive H3K9me2 patterning requires the histone methyltransferase 

activity of G9a/GLP. Inhibition of G9a/GLP by UNC0638 reverses H3K9me2 to a 

similar level as in the HSCs, and leads to better retention and expansion of the 

primitive cells. 

Key among these is: what specific roles do H3K9me2 marks play during 

HSPC lineage specification? During mammalian development G9a/GLP activity 

gives rise to large organized chromatin K9me2 modifications (LOCKs) regions of 

up to 4.9 Mb (Wen et al. 2009), which have been proposed to facilitate retention 

of higher order chromatin structure and epigenetic memory. LOCKs show 

apparent tissue specific patterns based on examination of H3K9me2 marks in 

mouse brain, liver, and human placenta (Wen et al. 2009). Our results are 
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consistent with formation of LOCKs-like H3K9me2 territories during human 

hematopoiesis and, moreover, support roles for H3K9me2 in development of 

higher order chromatin structures during HSPC lineage specification. G9a/GLP­

dependent H3K9me2 marks arise in HSPC nuclei as "speckles", which likely 

indicates the formation of organized chromatin structures during lineage 

commitment. Furthermore, UNC0638 treatment affects expression of multiple 

genes appearing in chromosome gene clusters in HSPCs (e.g., 6p21, 11 p15, 

17q11), suggesting that H3K9me2 facilitates formation of local chromosome 

structures at these loci. For example, G9a/GLP-H3K9me2 has been shown to 

facilitate silencing of HBE1, HBG1, and HBG2 during mammalian development 

by altering chromatin secondary structure of LCR and the fetal hemoglobin genes 

(Chaturvedi, et al. 2009). ExpreSSion of these genes is de-repressed in 

UNC0638-treated HSPCs. Thus, the results are consistent with the notion that 

UNC0638 treatment partially blocks formation of higher order chromatin structure 

in HSPCs. 

Another question is how H3K9me2 marks arise in committed 

hematopoietic cells. Since G9a/GLP-dependent H3K9 methylation can occur de 

novo, pre-existing epigenetic marks are not required (Collins and Cheng 2010). 

Our results show that H3K9me2 nucleation sites in HSPCs most strongly overlap 

with CpG islands, perhaps suggesting a functional link between H3K9me2 and 

DNA methylation . Since CGls are generally hypomethylated in HSPCs (Hodges 

et al. 2011), one possibility is that G9a/GLP and DNMT activity are coordinated 

such that H3K9me2 marks are laid down by default only where CpGs are 
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unmethylated (i.e., in CGls). Alternately, specificity factors might target G9a/GLP 

to CGls. For example, in ESCs G9a/GLP bind to UHRF1, which, in turn, binds to 

hemi-methylated CpG sites (Kim et al. 2009). 

One intriguing implication of our results is that the absence of H3K9me2 

marks in HSCs may facilitate adoption of alternate chromatin and chromosomal 

structures required for lineage commitment and speCification. This would be 

consistent with the concept that HSCs harbor open chromatin structure that 

results promiscuous transcription (Akashi et al. 2003), which is incompatible with 

the presence of H3K9me2 chromatin territories. 

This work also has important implications for clinical uses of human HSCs. 

One of the long-standing roadblocks limiting application of HSCs has been our 

inability to effectively expand and/or immortalize HSC ex vivo (Dahlberg et al. 

2011). Initial attempts at ex vivo expansion of HSPCs focused on cytokine 

stimulation to support survival and proliferation of lineage-committed progeny in 

the hope of expanding true HSCs as well (Dahlberg et al. 2011; Sauvageau et al. 

2004). However, these attempts have largely failed to enhance in vivo 

engraftment in patients. 

One notable exception is stimulation of Notch signaling in cord blood units 

(Ohishi et al. 2002; Delaney et al. 2010), which allows more rapid myeloid 

reconstitution in patients with post-transplantation cytopenias. However, it 

appears that Notch-expanded cord blood units may be depleted of long-term 

repopulating HSCs (Dahlberg et al. 2011), and, as a result, are given in 

combination with na·ive cord blood units to provide stem cells to improve long-
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term engrafiment. Moreover, Notch-driven expansion only affects fetal cord blood 

stem cells but has no effect on adult human HSC expansion (Dahlberg et al. 

2011 ). 

However, Cooke and colleagues recently discovered that SR1, a small 

molecular inhibitor of the aryl hydrocarbon receptor, promotes expansions of 

CD34+ human HSPCs in ex vivo cultures (Boitano et al. 2010). Our SR1 trials 

similarly support these findings in adult stem cells, although SR1 treatment did 

not dramatically affect expression of AHR-pathway targets, as previously 

reported (Boitano et al. 2010). 

Our studies with UNC0638 revealed that this drug on its own had effects 

similar to SR1 with respect to retention of CD34+ HSPCs and also HSPC 

engrafiment activity in immunocompromised mice. Moreover, examination of 

SR1 and UNC0638 treatment revealed that each affects both common and 

distinct populations of HSPCs, with most dramatic effects observed on primitive 

HSCs. The mechanisms giving rise to their expansion effects were clearly 

divergent based on transcriptional profiling and there was no evidence of cross 

regulation of either AHR-pathway and/or G9a/GLP gene expression. 

We envision several clinical applications of SR1/UNC0638 treatments. 

First is in the expansion of HSCs for transplantation. There are many cases were 

transplantation products are critically limited (e.g., young or small donors, prior 

treatment of the donor, or failure to mobilize). Second is in accelerating 

transplantation recovery. Post-transplantation cytopenias, including neutropenias 

and thrombocytopenias, are commonplace, and lead to life threatening infections 
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or bleeding and result in costly, extended hospitalization (Dahlberg et al. 2011). 

Our results from modeling transplantation of SR1/UNC0638 cultures in a canine 

model suggest that combining day-14 expanded cultures with non-manipulated 

HSPCs may help bridge post-transplantation neurtropenia, in addition to 

providing long term engraftment. Third, it is conceivable that UNC0638 has the 

potential benefit to patients with beta-hemoglobinopathies by reactivating the 

embryonic and fetal hemoglobin, whose activation is associated with milder 

symptoms (Akinsheye et al. 2011). Lastly, we envision that SR1 and UNC0638 

may be combined with additional experimental manipulations to practically 

immortalize single HSC for unlimited expansion while retaining developmental 

potential, similar to ESCs or induced pluripotent stem cells. 

In conclusion, our data strongly suggest that G9a/GLP-mediated 

H3K9me2 patterning is required for HSPC lineage specification and its inhibition 

leads to delayed differentiation and retention of the HSPCs. These findings 

should prove useful for clinical and experimental applications limited by current 

techniques to maintain HSPCs in vitro. 
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CHAPTER 4 

SMALL MOLECULAR INHIBITOR OF G9A1GLP, UNC0638, PROMOTES 

MEGAKARYOPOIESIS FROM HUMAN HSPC 

4.1 UNC0638 promotes CD41+/CD42+ megakaryocytes from CD34+ HSPCs 

We performed a 14-parameter flow analysis on differentiation markers, 

including granulocyte marker CD15, and megakaryocyte marker CD41. We found 

that while the majority of CD34- cells differentiated from SR1 treated HSPCs are 

CD15+, CD34- cells generated from UNC0638 treated HSPCs are largely CD15-

(Fig. 4.1A). On the other hand, UNC0638 expanded the CD41+ cells to a 

significant greater extent compared to the control and SR1 (Fig. 4.1 B). With the 

treatment of UNC0638, we achieved an over 4000-fold increase in the number of 

CD41+ cells from CD34+ HSPCs-16-fold more compared to the control (Fig . 

4.1 C). These phenotypes are consistent with our previous observation that 

UNC0638 acted on CD45RA- megakaryocyte/erythrocyte lineages while SR1 

acted on CD45RA+ granulocyte/monocyte lineages (Fig. 3.7A). It suggested that 

although both UNC0638 and SR 1 retained primitive HSPCs in vitro, they each 

have preferences in regarding to lineage specification when these cells 

differentiate. These results also emphasized the value of combining UNC0638 
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and SR1 to expand human HSPCs for transplantation purposes to ensure the 

regeneration of all blood lineages. 

We then examined the effect of UNC0638 on megakaryocytes maturation 

by two sequentially expressed megakaryocyte markers, CD41 (earliest 

megakaryocytic marker) and CD42 (late megakaryocytic marker). Megakaryocyte 

progenitors are CD41+CD4Z, while mature megakaryocytes are CD41+CD42+. 

On day 1, more than 90% of the starting CD34 + HSPCs are CD41 "CD42" , with 

6.6% CD41+CD42" cells and less than 0.5% CD41+CD42+ cells (Fig. 4.1D). On 

day 7 in TPO-containing medium, treatment of UNC0638 resulted in 12.1 % 

CD41"CD42+ cells and 24.3% CD41+CD42+ cells, which are twice as many as the 

control and SR1 (Fig. 4.1E). On day 12,17.7% of UNC0638 treated CD34+ cells 

became CD41+CD4Z and 41.8% became CD41+CD42+, which is more than 3 

fold compared to the control and SR 1 (Fig. 4.1 F). We also showed that 

BIX01294, an UNC0638 analogy, has similar effect as UNC0638 (Fig. 4.1 G). 

To further characterize which progenitor population UNC0638 is affecting, 

we sorted five HSPC pools (HSC, MPP, CMP, MEP, and GMP), treated with 

UNC0638 separately and did flow analYSis on CD41 and CD42 on day 12 (Fig. 

4.1 H). We found that UNC0638 stimulates megakaryopoiesis and promotes the 

maturation of megakaryocytes from all HSPC pools except for the GMP, which is 

consistent with known developmental potential of these populations. 
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Figure 4.1. UNC0638 promotes megakaryopoiesis. (A and B) Flow analysis of 

CD34+ cells cultured in serum-free medium for 14 days revealed a significant 

increase of CD41 + and decrease of CD1S+ cells with the treatment of UNC0638. 

(C) Fold increase of CD41 + cells from CD34+ cells on day 14. (D-F) CD41 and 

CD42 expression on day 1 (D), day 7 (E) and day 12 (F). (G) BIX01294 has 

similar effect as UNC0638. (H) UNC0638 treatment promotes CD41 +CD42+ 

megakaryocytes from HSC, MPP, CMP, MEP but not GMP. 
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4.2 UNC0638 inhibits non-meg lineage differentiation 

First, to test whether UNC0638 also promotes erythropoiesis, we added 2 

U/ml of erythropoietin (EPO) into the culture medium and did flow analysis of 

CD41 and CD235a (erythrocyte glycophorin a). Our results indicated that 

UNC0638 increased the percentage of CD41 + but decreased the percentage of 

CD235a+ cells (Fig. 4.2A). It suggests that UNC0638 may promote 

megakaryopoiesis at the expense of erythropoiesis. 

To examine the effect of UNC0638 on other hematopoietic lineages, I 

performed an experiment to induce differentiation of CD34+ celis into a number of 

lineages by adding different cytokines. For all cultures, SCF, IL-6 and Flt3L were 

added to support cell growth. In addition, in separate cultures, TPO was added to 

induce megakaryopoiesis (CD41+CD42+), EPO was added to induce 

erythropoiesis (CD235a+), GM-CSF for granulocyte and monocyte differentiation 

(CD15+ and CD14+, respectively) and IL-3 for myeloid cells in general. Flow 

cytometry and cell counting were performed 12 days post treatment on different 

lineage markers. 
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34+% 41+42+% 235a+% 15+% 14+% 33+% Total cell # 
told change 

SF6 23.5 155.1 1.0 1 B.O 0 10 58.0 131.5 6.6 15.0 96.5 195.4 42.3 120.4 

SF6+TPO I 31.2 155.2 7.3 134.4 a 10.2 40.8 111.5 4.6 12.3 91.2 190.7 114.91122.1 

SF6+ll-3 24.6 130.8 3.5 113.7 4.8 1 B.1 29.9 118.4 5.9 13.7 92.4 192.1 206.41 213.9 

SF6+GM-CSF 22.8 126.3 2.3 17.3 7.6 14.6 34.1 126.4 2.0 11.B 66.5 1 B6.0 1222 1144.6 

SF6+EPO 5.4 137.7 0.5 13.7 I 71.3 142.2 9.1 1 B.1 1.8 11.4 12.9 130.5 159.3 165.7 

Figure 4.2. UNC0638 promote megakaryopoiesis at the expense of other 

lineages. (A) CD34+ cells were cultured with TPO and EPO and treated or 

untreated with UNC0638 for 7 days and examined for their expression of CD41 

and CD235a by flow. (8) CD34+ cells were culture with diverse cytokines. 

Percentage of lineage positive cells in each condition was analyzed, and cell 

number was counted on day 12. Cytokiens used: SF6: SCF + FL + IL-6, each at 

100 ng/ml; TPO, IL-3, GM-CSF each at 100 ng/ml; EPO at 0.1 Ulml. Red: DMSO; 

blue: UNC0638. Purple boxes indicate Significant changes. 
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4.3 CD41+CD42· megakaryocyte progenitor cells generated in UNC0638 are 

bi-potent 

To test whehter the CD41 +CD4Z cells generated in UNC0638 are bi­

potent megakaryocyte progenitors, which have the potential to give rise to both 

megakaryocytic and erythrocytic lineages, we cultured human G-mobilized 

CD34+ cells in our standard medium with 1 jJM UNC0638 for 12 days, and sorted 

the progenies into three populations: CD41 +CD42+ that contains mature 

megakaryocytes, CD41 +CD4Z that contains MEPs, and CD41-CD42- that 

contains immature progenitors and cells of non-megakaryocytic lineages (Fig. 

4.3A). We then put them each back to culture with the same TPO medium or with 

a red blood cell (RBC) expansion medium, which has SCF, IL-3, IGF-1, 

dexamethasone and 2 U/ml EPO. Flow analysis on CD41, CD42 and CD235a 

was performed 7 days after re-plating. We hypothesized that if the sorted 

population contains HSCs and/or MEPs, they should have bi-potency, meaning 

that they can generate CD41 +CD42+ mature megakaryocytes in TPO medium 

and CD41-CD235+ RBCs in EPO medium. As predicted, over 90% sorted 

CD41 +CD42+ cells broke up into small platelet-like cells, which stay CD41 +CD42+ 

in both TPO and EPO media (Fig. 4.3B,C bottom panels). On the contrary, 

77.4% of the CD41 +CD4Z MEPs further differentiated into CD41 +CD42+ mature 

megakaryocytes in TPO medium and 50.1 % of them lost CD41 expression and 

became CD41-CD235+ erythrocytes in EPO medium (Fig. 4.3B,C middle panels), 

proving that these cells are bi-potent. CD41-CD4Z cells that contains immature 

progenitors also had the ability to generate some CD41 +CD42+ cells in TPO 
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medium (11.5%) and erythrocytes in EPO medium (38.7%) (Fig. 4.3B,C upper 

pannels). 

A 
Sorting 

:~ .' .. 
... .' .. .... 
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• wi ~ .. .t'" 

CD42a----+ 

Figure 4.3. Megakaryocyte progenitors generated in UNC0638 are bi-potent. 

(A) CD34+ cells were culture with UNC0638 for 12 days and then sorted into 3 

populations: CD41-CD42- (immature progenitors and cells of non-megakaryocytic 

lineages), CD41 +CD42- (M EP), and CD41 +CD42+ (mature megakaryocyte). 

Sorted cells were replated in TPO- (B) or EPO- (e) containing medium for 7 days 

before flow analysis. Both CD41-CD4Z and CD41 +CD4Z cells had the ability to 

generate CD41+CD42+ cells in TPO medium and CD235a+ erythrocytes in EPO 

medium, with the most from CD41 +CD4Z cells. Whereas, over 90% 

CD41 +CD42+ cells broke up into small platelet-like cells, which stay CD41 +CD42+ 

in both TPO and EPO media. 
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4.4 Megakaryocytes generated in UNC0638 can penetrate endothelial cell 

vessel wall and release platelets in a 3D-culture system 

To confirm whether the large number of megakaryocytes generated with 

UNC0638 are functional, we cultured them in an engineered microvessel system, 

which mimics the in vivo microenvironment (Zheng et aI., 2013). In this 

experiment, human CD41 +CD42+ mature megakaryocytes sorted from day 10 

culture of CD34+ HSPCs with continuos UNC0638 treatment were mixed with 

collagen gel, and together were molded against a micropatterned silicone rubber 

stamp to form a microfluidic network. Human umbilical vein endothelial cells 

(HUVECs) were then seeded along the vessel wall. Normal endothelial cell 

medium with TPO was flowing in the vessel by gravity. Three days after culture, 

microvessles were fixed and stained for CD31 (endothelial cells), CD41 

(megakaryocytes) and DAPI (nuclei). 

We found that megakaryocytes migrated from the collagen matrix to the 

vessle wall and were tightly associated with the HUVECs. Moreover, some 

megakaryocytes were able to penetrate the microvessel and release platelets 

into the vessel lumen (Fig. 4.4A,8). We also observed pro-platelets that were 

released into vessel wall (Fig. 4.4C,D). These results suggested that UNC0638 

generated megakaryocytes can produce platelets in a 3D-culture system. Further 

functions of culture-generated megakaryocytes will be tested in vivo in 

immunodeficient mice. 
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Figure 4.4. CD41 +CD42+ megakaryocytes generated in UNC0638 penetrate the 

microvessel and release platelets. (A) Megakaryocyte penetrates the vessel wall 

and releases platelets in the vessel. (8) Megakaryocyte completely penetrated 

into the microvessel. (C, 0) Pro-platelets observed that are released into vessel 

wall. Green: CD31 (endothelial cells on the vessel wall); red: CD41 

(megakaryocytes and platelets); blue: DAPI (nuclei). 
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4.5 Discussion 

Megakaryocytes are generated from HSCs through a complex process, 

including cellular enlargement, multiple endomitosis, membrane system 

development and cytoplasmic fragmentation (Patel et aI., 2005). Since the 

discovery of TPO (Bartley et al. 1994), great efforts have been made to generate 

megakaryocytes ex vivo from CD34+ cells (Lannutti et aI., 2005; Chen et aI., 

2009; Liu et aI., 2010). With the inhibition of H3K9me2 by UNC0638, we 

observed higher expression of megakaryocyte markers CD41 and CD42 using 

human adult CD34+ cells, and increased number of large cells using dog whole 

bone marrow. In a 3-dimensional culture system, UNC0638 generated 

megakaryocytes were able to migrate and interact with endothelial cells and 

produce platelets in the microvessel. 

These results add to the growing approaches for future development of an 

in vito platelets production system. It also sheds light on the role of epigenetic 

modifications in regulation of hematopoiesis. We hypothesize that the balance 

between histone H3K9 methylation and demethylation may be involved in critical 

steps of megakaryopoiesis. In fact, two recent studies using genome-wide meta­

analysis have identified a histone H3K9 demethylase JMJD1 C, among several 

other novel genes, has crucial roles in megakaryopoiesis (Gieger et aI., 2011) 

and platelet aggregation (Johnson et aI., 2010). Silencing of JMJD1C in zebrafish 

led to ablation of both megakaryopoiesis and erythropoiesis (Gieger et aI., 2011). 
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Inhibition of G9a/GLP by UNC0638 may have similar effect as JMJD1C in 

megakaryopoiesis. 

However, it is of note that we did not detect lineage specific pattern of 

H3K9me2, and its distribution in megakaryocytes and T-cells is identical. Genes 

up-regulated in HSPCs by UNC0638 treatment are not megakaryocyte specific 

either. The precious role of G9a/GLP and H3K9me2 on megakaryopoiesis 

requires further investigations, and the molecular mechanism, by which 

UNC0638 preferentially induces the megakaryocytic lineage, needs to be 

determined. 

Although our results are strongly suggestive of a mechanism whereby 

UNC0638 blocks G9a/GLP-H3K9me2 activity to affect HSC differentiation, 

G9a/GLP also have non-histone methylation targets. Known non-histone targets 

include: ACINUS (Rathert et aI., 2008), CDYL 1 (Rathert et aI., 2008), WIZ 

(Rathert et aI., 2008), C/EBP-~ (Pless et aI., 2008), p53 (Huang et aI., 2010), and 

Reptin (Lee et aI., 2010) (Collins and Cheng, 2010; Shinkai and Tachibana, 

2011). Among these genes, C/EBP-~ has been shown to be involved in 

granulopoiesis in stress conditions (Hirai et aI., 2006). 

Previous studies also found that a nuclear factor kappa B (NF-KB) 

transcription factor RelB interacts with G9a. G9a dimethylates H3K9 in target 

gene, which further recruits heterochromatin protein 1 (HP1) and Dnmt3 and 

causes heterochromatin formation (Chen et al. 2009). Additionally, GLP can 

recognize and bind to methylated ReIA, and lead to chromatin condensation at 

NF-kB-dependent target genes (Chang et al. 2011). Thus, UNC0638 treatment in 
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CD34+ cells may negatively affect the NF-KB signaling pathway, as it was found 

that DNA binding activity of NF-KB and IKK was downregulated in 

megakaryocytes (Zhang et al. 2002). 

Considering those possibilities, at this time, we cannot formally exclude 

non-histone G9a/GLP targets as being key regulators responsible for the 

megakaryocytic phenotypes. However, regardless of precise mechanism of 

UNC0638 function, this work should have important implications for clinical 

expansion of human megakaryocytes in vitro. 
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CHAPTER 5 

IDENTIFICATION OF GENES GOVERNING LINEAGE COMMITMENT OF 

HUMAN COMMON MYELOID PROGENITOR CELLS BY SHRNA SCREENING 

5.1 Create an shRNA library that can achieve satisfactory transfection 

efficiency and stable knockdown in CD34+ cells 

I first tested a number of lenti- and retro-viral vectors and found that a 

retroviral vector (MLP) (Fig. 5.1A), which utilizes a MSCV promoter, produce 

robust infection efficiencies and gene silencing, and outperforms lenti-based 

platforms in HSPCs (which appear to trigger an innate-immunity response that 

blocks silencing). 

Our shRNA library contains - 8000 shRNAs, with an average of -2 

shRNAs per gene, targeting 390 E3-ubiquitin ligases, 784 kinases, and 1013 

transcription factors (Paddison et a!., 2004). shRNAs were cloned into MLP from 

pGIPZ. We have achieved - 10% transduction efficiency using concentrated 

MLP retrovirus in CD34+ HSPCs. shRNAs against a control gene, PTEN, showed 

- 60% knockdown of gene expression in both CD34+ and CD34- cells (Fig. 5.18). 
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Figure 5.1. MSCV-L TRmiR30-PIG (MLP) based shRNA library. (A) Our shRNAs 

are designed based on the structure of an endogenous miRNA, miR-30. Pooled 

shRNA library is cloned into the Xhol and EcoRI sites of an MSCV-based 

retroviral vector (MLP). (8) MLP retrovirual vector facilitates RNAi in human 

CD34+ HSPCs. Cells were infected with MLP retrovirus carrying a PTEN shRNA, 

sorted for GFP and CD34+1
- 72 hours post-infection, and used for Q-PCR 

detection of PTEN expression in the four populations. 
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5.2 Conduct a screen with the shRNA library in CMPs 

For the screen (Fig. 5.2), donor derived CD34+ cells were thawed and 

cultured for 1 day in myeloid expansion medium and sorted for 

CD34+CD123+CD45RA (CMP population). Next, sorted cells were infected with 

concentrated viral supernatants of pooled human MLP-shRNA library to produce 

- 1 million infected cells and allowed to outgrow for 4 days in myeloid expansion 

media. Transduction efficiency was kept low (- 10%) to ensure only one shRNA 

per cell. 4 days post infection, - 10 million GFP+ cells were sorted into four 

populations: CD34+CD123+CD45RA- (CMP), CD34+CD123-CD45RA- (MEP), 

CD34+CD123-CD45RA+ (GMP), and CD34- (committed cells). 

G-CSF treated 
donor 

• 

Mobilized 
CD34' HSPCs 

Common myeloid progenitor (CMP) 

shRNA-seq: 
CMP vs . CD34-

Figure 5.2. A screen for shRNAs promoting expansion or differentiation of 

Sort II: 
CMP& 
CD34· 

HSPC-derived CMPs. 28 of the screen hits are expression QTLs for mouse HSC 

activity which >40 have published functions associated with hematopoiesis or 

leukemia. 
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5.3 Determine relative representations of shRNAs in CD34+ CMPs vs. CD34-

differentiated cells 

For each population, shRNAs were amplified using half-shRNA PCR 

strategy (i.e. 5' vector primer + 3' miR30-shRNA loop primer) from genomic DNA 

representing - 2 million cells (- 33 IJg). Iliumina sequencing adaptors were 

ligated onto purified shRNA PCR products (Iliumina kit) and used for high­

throughput sequencing-by-synthesis (HT-SBS) on an IIlumina HiSeq 2000 

sequencer (Genomics facility, FHCRC). The resulting reads (- 40 million per 

replicate) were mapped onto a reference library containing library shRNA 

sequences and filtered to include only those with phred-based mapped quality of 

37, representing about 79% of reads for each replicate. Mapped reads tallied and 

compared using two R/Bioconductor packages. edgeR, developed for RNA-seq 

analysis, and limma, developed for microarray analysis (Smyth 2005). Both 

comparisons subtract control from experimental replicated to calculate 10gFC and 

use the Benjamini-Hochberg FOR calculation to adjust p-vales for multiple 

comparisons. 

We found - 322 shRNAs enriched in the CD34- (i.e. lineage committed 

cells) and - 290 shRNAs enriched in CD34+ CMP population (LogFC>5, 

FDR<0.05). We further filtered these hits based on: 

(1) Literature mining: hematopoietic/hematopoietic malignancy function 

(11 % hits) 

(2) Interactions with other screen hits-direct protein-protein only (9% hits) 
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(3) Enriched expression in human HSC, blood progenitor, and/or leukemia 

(> 5% hits) 

(4) Mouse HSC eQTls (Gerrits et al. 2008; Bystrykh et al. 2005) (5% hits) 

The last category is worth noting. HSCs eQTls were identified by De 

Haan and colleagues using a "genetical genomic". They mapped mouse QTls 

associated with in HSC frequency and progenitor division rates (which were 

shown to be cell autonomous traits) from recombinant inbreed lines of two 

laboratory mouse strains (C57BLl6 and DBAl2) harboring heritable differences in 

these traits (Bystrykh et al. 2005). Next, gene expression levels in HSC and 

progenitor populations were examined from the recombinant inbred lines to find 

transcripts that co-vary with HSC QTls (i.e. eQTls). By this method, they were 

able to identify >500 HSC eQTls and, thus, candidate genes and pathways 

involved in HSC turnover. However, they were not able to demonstrate 

requirement for eQTls gene candidates. When we compare our screen hits with 

their eQTls, 28 genes were directly in common. Among these, we have 

prioritized ones that also score by other metrics. 

Based on these criteria, we found 15 hits and will examine their roles in 

promoting HSPC activity and/or hematopoietic lineage formation (Table 5.1). 
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Screen hit Known 
protelnl gene hematopoietic 

interaction I phenotype 

CDH1 ., CD34+ ~ HSCpolBlze G1/S entry 

EWSR1 ., CD34+ J( LRRC15 HSC quiescence INK4A repression 

GRIN2C "CD34+ ~ Unknown Glutamate signaling 

GRIN2D ., CD34+ ,/ Megakaryopolesls Glutamate signaling 

NlK ., CD34+ ,/ TCF7l2 MDS,AMl Cytoklne signaling 

NROB1 ., CD34+ ~ NR5A2 Unknown Progenitor gene regulation 
EWSR1 

NR5A2 "CD34+ ,/ NROB1 Unknown progenitor gene regulation 

PIK3CD ~CD34+ ,/ RUNX1 AMkl, Cll Survival 

RBAK ~CD34+ J( HSC expressed E2F repression 

TBl1X ~ CD34+ J( HDAC3 Unknown Progenitor gene regulation 
TBL1XR1 

lBl1XR1 ., CD34+ J( TBl1X Unknown Progenitor gene regulation 

EGR1 +CD34+ JC HSC quiescence Progenitor gene regulation 

MS4A3 +CD34+ J( HSC quiescence G1/Sentry 

NUMB + CD34+ ,/ AAK1 HSC differentiation Cytoklne signaling 

RNF138 +CD34+ J( Unknown Differentiation 

Table 5.1. Selected candidate HSPC shRNA screen hits. t CD34+ means 

shRNAs enriched in CD34- cells; t CD34+ means shRNAs enriched in CMP. 
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5.4 Create a smaller pool of shRNAs for a secondary screening 

Our normal procedure in validating an RNAi screen is to first crudely 

estimate true-false positive frequency by randomly testing 10-20 screen hits. 

From our experience performing RNAi screens in human cell lines, embryonic 

stem cells (Schaniel et al. 2009), neural stem cells and glioma stem cells (Ding et 

al. 2013), true positive validation frequencies range from 5%-50%. Given the 

expense of acquiring biological blood progenitor samples, we carefully analyzed 

screen hits in order to enrich for true positives. 

For re-test, we first created a pool of 335 shRNAs, targeting 41 genes, 

whose shRNAs were over-represented in CMPs. These shRNAs were cherry­

picked from our archive shRNA plates, and cloned into the MLP retroviral vector 

as a pool. The secondary screen will be conducted in the same way as the 

primary screen. qPCR will be performed to measure relative representation of 

shRNAs in CD34+ CMP vs. CD34- differentiated cells. This rescreen will identify 

true/false positive hits. 

5.5 Validate and characterize candidate commitment or self-renewal genes 

Positive hits from the secondary screen will be tested by flow cytometry 

analysis of cell surface markers (e.g. CD34, CD90, CD123, CD45RA, CD41, 

CD15, CD235a) to determine knockdown effects of single genes on CD34+ 

HSPCs. Further tests will also include CFU activity assays, long-term initiating 

cell (L TC-IC) assays, and in vivo in a canine transplantation model (on-going). 
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5.6 Discussion 

This study will serve as a basis for other in vitro RNAi screens in normal 

and malignant blood stem cells derived from human donors and patients. If 

successful, we will identify novel genes and molecular pathways required for 

human HSPC activity, which, in turn, can be exploited by scientists and clinicians 

at the Hutch and elsewhere to facilitate ex vivo and in vivo manipulations of 

highly desirable human hematopoietic stem/progenitor cells. 

However, we still need to verify that the screen knockdown phenotypes 

can translate to CFU and engraftment assays. Constitutive knockdown may block 

developmental pathways required for colony formation or successful 

engraftment. Another problem we have encountered is achieving reliable 

infection efficiency and durable gene silencing in human CD34+ cells . This 

problem, along with access to source material, likely accounts for the lack of 

published RNAi screens in human and mouse HSPCs. After initial examination of 

our standard lenti- and retro-shRNA expression vector, we have found that an 

MSCV-retroviral-based system provided sustained knockdown and robust 

reporter gene expression in CD34+ cells. Thus our initial screen was performed in 

this system. However, since this system only productively infects dividing cells, it 

is not ideal for assay quiescent or slow dividing stem cell populations. Therefore, 

we are also testing other lentiviral systems with alternative promoter, reporter 

and shRNA configurations, in CD34+ cells. 
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Moreover, this screen will also serve as the basis for in vivo RNAi screens 

in canine model of HSPC transplantation. We have now completed construction 

of the dog shRNA library, named SHAGi (Short Hairpin Activated Gene 

Inhibition) dog library. First, as a proof of principle study, we transduced dog 

bone marrow cells with shRNAs targeting dog EPO receptor, and plated these 

cells in CFU assays. We found that cells transduced with EPO receptor shRNAs 

generated significantly less CFU-E than cells transduced with a control vector. 

We will further test the efficacy of this library and ultimately examine the stem cell 

activity in vivo in a canine transplantation model. 

In addition, we have a - 16,000 human ORFeome library, which is also 

being replicated for cherry picking schemes. ORFs corresponding to - 100 

screen hits chosen for shRNA retest, will be cherry-picked from this library, and 

rescreened in the same format. In this scheme, we seek to identify ORFs that 

show the opposite biological effect of their cognate shRNA; for these will be 

candidate genes that are "necessary and sufficient" for stem cell activity. 
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CHAPTER 6 

DISCUSSION AND FUTURE DIRECTION 

6.1 Discussion 

Over 50 years of bone marrow transplantation (BMT) have proved that 

human hematopoiesis is supported by a population of multi potent HSCs, which 

are capable of self-replicating and generating progenies that can differentiate into 

various blood cell lineages throughout life. However, achieving a broader 

application of BMT with greater success is limited by our ability to control their 

cell fate decisions. 

One challenge is that HSCs do not self-renewal in vitro and thus have very 

limited quantity for both clinical and research purposes. A lot of evidence 

suggests that the number of HSCs infused strongly correlates with post­

transplantation outcomes (Dahlberg et aI., 2011). Numerous approaches are 

under investigation to expand HSCs in vitro, including (1) mimicking the in vivo 

HSC niche, for example using HSC-supportive stromal cells (Goerner et al. 2000; 

Li et al. 2007), (2) novel cytokines, such as Angiopoietin-like 5 (Angptl5) and 

IGFBP2 (Zhang et al. 2008), (3) novel culture strategy (Csaszar et al. 2012), (4) 

genetic modification, such as overexpression of the homeobox gene HOXB4 
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(Antonchuk et ai., 2002; Amsellem et ai., 2003), and (5) epigenetic regulations 

(Milhem et ai., 2004; Nishino et ai., 2011). However, although many of tnem have 

reported ex vivo stem cell expansion, few, if any, actually involve expansion 

through true self-replication and retention of stem cell potential. 

Another challenge is to direct the commitment of multipotent HSPCs into a 

particular lineage to treat lineage-specific cytopenia. For example, to induce 

produce and expand large number of autologous megakaryocytes ex vivo from 

HSPCs, which can then be infused into patients. This will help overcome 

thrombocytopenia post BMT and reduce the need for platelet transfusion. This 

requires greater insights into the molecular mechanisms that can enhance 

megakaryocytic lineage commitment from progenitor cells . 

Our studies have found that treating human HSPCs with a small molecular 

inhibitor of G9a/GLP histone methyltransferases, UNC0638, promotes retention 

of primitive cell phenotypes in vitro, which is correlated with more stem cell 

activity in vivo. Moreover, UNC0638 treated HSPCs preferentially give rise to the 

megakaryocytic lineage over other myeloid lineages when they differentiate. 

Molecular studies found that UNC0638 treatment removes H3K9me2 marks 

throughout the genome to a similar level as in the primitive HSCs. However, the 

precious role of G9a/GLP and H3K9me2 in HSPC lineage commitment, and 

whether this megakaryocyte-specific phenotype is due to H3K9me2 or non­

histone targets of G9a/GLP, need further investigations. 

We also conducted an shRNA library screen in human HSPCs. This study 

will not only identify genes required for HSCP self-renewal and lineage 
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commitment but more importantly will serve as a basis for future library screening 

approaches in HSPCs (e.g. modifiers of UNC0638 expansion, human ORFeome 

library, miRNAs). 

To better understand the complex regulatory network that governs HSPC 

fate determination, we are also studying other factors in human hematopoiesis, 

including DNA methylation, miRNAs, and chromatin structures. 

6.2 DNA methylation profiling of human HSPCs 

In this on-going study, we examined and compared DNA methylation 

status of at> 485,000 CpG sites throughout the genome of human HSC, MEP, 

GMP, megakaryocyte (Meg) and unfractionated CD34+ cells treated or untreated 

with UNC0638. It covers 99% of Ref Seq genes, with an average of 17 CpG sites 

per gene, and 96% of CpG islands. We found that DNA methylation status of 

different populations was clusterd by their lineages-MEP and Meg showed 

similar methylation patterns with more significant differences in the Meg 

population (Fig. 6.1A). We also compared UNC0638 treated CD34+ cells with 

control DMSO treated CD34+ cells but did not detect a significant difference. We 

also identified genes that were differentially methylated in different populations 

(Fig. 6.1 B), and these patterns correlate with their known functions in 

hematopoiesis. For examples, CD34 is a cell surface maker of primitive HSPCs, 

and it is less methylated in the most primitive HSCs, and heavily methylated in 

differentiated Megs. On the other hand, Meg related genes GATA1, GATA2, and 

MPL (TPO receptor) had decreased DNA methylation in MEP and Meg 
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populations (Fig . 6.18). It is interesting to note that DNA methylation level of 

DNMT3A itself was also increased as the cells differentiate into Megs (Fig. 6.18). 

A 8 

HSC GMP CD34 MEP Meg CD34 
-UNC -DMSO HSC GMP CD34-U MEP Meg CD34·D 

0.89 1.40 1.00 1.21 2.21 CD34 

1.05 1.11 0.98 0.60 0.48 GATAl 

1.07 1.22 1.00 0.53 0.21 1 GATAl 

0.53 :&.2:1 .. 0.90 1.22 0.58 1 GATA2 

0.95 1.94 1.16 0.64 OAll 1 MPL 

1.13 o 9 0.95 1.02 1.59 RUNXl 

0.94 0.84 1.09 1.45 2.04 ITGA2B 

1.00 1.12 1.09 1.79 2.78 DNMTJA 

1.03 1.21 1.11 1.45 3.50 DNMT3A 

1.02 1.85 0.79 3.Q9 5- PU.l 

Figure 6.1. DNA methylation profiling. (A) Shown are probes that were 2-fold 

different between the CD34-DMSO control in at least one other sample. Red: 

more methylated compared to CD34-DMSO control; green: less methylated 

compared to CD34-DMSO control. (8) Sample genes with differential methylation 

status in different lineages. 

Further analysis will include where the methylation marks are located (e.g. 

CGls and shores), overlap of DNA methylation with other genomic elements (e.g. 

gene promoter, enhancer, SINE, LINE), gene set enrichment analysis. We have 

also done RNA-seq of the same populations, and will compare gene expression 
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level to DNA methylation level to determine if these two are negatively correlated 

as DNA methylation is believed to repress gene expression. These analyses will 

help us understand the role of DNA methylation in human hematopoiesis, and 

may identify novel genes involved in HSPC lineage commitment. 

6.3 Role of miRNAs in human hematopoiesis 

We also performed a miRNA sequencing, to examine their expression 

levels in human HSC, MEP, GMP, megakaryocyte (Meg) and unfractionated 

CD34+ cells treated or untreated with UNC0638. We found a number of miRNAs 

that were differentially expressed in different cell populations (Fig. 6.2). Some of 

these miRNAs have known functions in the hematopoietic system. For example, 

miR-12Sb, which has higher expression in HSCs than immature progenitor cells 

and committed Megs, was found to expand the mouse HSCs when 

overexpressed (Ooi et al. 2010). miR-10a was also found to be higher expressed 

in the stem cell fraction (Bissels et al. 2011), which is consistent with our results. 

One miRNA that showed dramatic change in GMP vs. MEP and Meg 

lineages is miR-486. It was also confirmed by qPCR array that miR-486 was 

significantly up-regulated in Meg and erythrocyte lineages, and was down­

regulated in the GMP lineage. miR-486 was located within the last intron of a 

erythrocyte gene Ankyrin-1 on chromosome 8 (Small et al. 2010). It was also 

found to regulate the NF-KB signaling pathway (Song et al. 2012). 
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The roles of miR-486 and other interesting miRNAs in HSPC and 

megakaryocytic commitment will be further studied using miRNA mimics and 

antagomirs for transient expression/knockdown, and expression vectors and 

miRNA sponges for long-term effects. Flow cytometry and CFU assays will then 

be performed to examine cell phenotypes and functions. 

6.4 Studying higher-order chromatin structure by FAIRE-seq and 3C 

We have showed that HSPC differentiation is accompanied by a 

progressive increase of H3K9me2, and H3K9me2 marks in HSPC nuclei appear 

as "speckles" (Fig. 3.1 and Fig. 3.4). UNC0638 treatment largely removes the 

H3K9me2 mark throughout the genome and affects expression of multiple gene 

clusters (Fig. 3.5). These data suggest that H3K9me2 may facilitate 

formation/organization of higher-order chromatin structure in HSPCs. However, it 

is not clear that how chromatin structure and conformation change during lineage 

commitment, and whether they are altered by removal of H3K9me2. 

To answer these questions, we first collaborated with Dr. Schones's lab at 

City of Hope to perform a FAIRE-seq (formaldehyde-assisted isolation of 

regulatory elements coupled with high-throughput sequencing, Fig. 6.3) (Giresi 

and Lieb 2009; Auerbach et al. 2009; Gaulton et a!. 2010; Song et a!. 2011) on 

UNC0638 treated or untreated CD34+ cells to map open chromatin regions in 

these cells. In this experiment, CD34+ cells were treated with UNC0638 or DMSO 

control for 48 hours, and crosslinked with formaldehyde. Sonication was then 

performed on ceillysates, and DNA was extracted using phenol-chloroform. DNA 
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fragments of - 100-350 bp were selected and sequenced. It was found that DNA 

regions identified by FAIRE-seq are associated with open chromatin structure, 

and overlap with T88, H3K4me3, and CGls (Auerbach et al. 2009). Therefore, 

using this method, we can test whether removal of the repressive marker 

H3K9me2 opens the chromatin, and if so, on what locations. If this method 

proves applicable in our system, we can then use it to study changes in 

chromatin structure as the H8PCs undergo lineage specification. 

Cross-link chromatin with formaldehyde 

+ Shear by Extract with 
sonication phenol-chloroform 

) } u + Perform next-generation 
.... sequencing of 

extracted fragments 

Figure 6.3. FAIRE-seq procedure. 

(Figure adapted from Gaulton et al. 2010) 

We will also utilize a chromosome conformation capture (3C) technique 

(Dekker et al. 2002) to study the organization of chromosomes during H8PC 

commitment. It is suggested that chromosomal activities are related to their 

spatial conformations. For example, it was found that gene-rich regions are 
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relatively more distant from the nuclear membrane than gene-poor regions 

(Cremer et al. 2003). It was also suggested that H3K9me2 might playa role in 

chromosome reposition during ESC differentiation by interacting with the nuclear 

lamina (Wen et al. 2009). Using 3C, we will be able to analyze the spatial 

organization of chromosomes in HSPC and lineage committed cells, and whether 

it is regulated by H3K9me2. 

These studies will reveal genetic and epigenetic factors driving HSPC 

commitment decisions. Ultimately our goal is to facilitate ex vivo and in vivo 

manipulations of human HSPCs to control lineage commitment. 
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